TY - JOUR
T1 - Scattering operator for nonlinear klein-Gordon equations
AU - Hayashi, Nakao
AU - Naumkin, Pavel I.
PY - 2009/10
Y1 - 2009/10
N2 - We prove the existence of the scattering operator in H1+n/2,1 in the neighborhood of the origin for the nonlinear KleinGordon equation with a power nonlinearity utt-Δu+u=μ|u|p-1u, (t,x) ∈ R × Rn, where p > 1+2/n, μ ∈ C, n=1,2.
AB - We prove the existence of the scattering operator in H1+n/2,1 in the neighborhood of the origin for the nonlinear KleinGordon equation with a power nonlinearity utt-Δu+u=μ|u|p-1u, (t,x) ∈ R × Rn, where p > 1+2/n, μ ∈ C, n=1,2.
KW - Asymptotics of solutions
KW - Nonlinear Klein-Gordon equation
KW - Scattering operator
UR - http://www.scopus.com/inward/record.url?scp=70350536288&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=70350536288&partnerID=8YFLogxK
U2 - 10.1142/S0219199709003582
DO - 10.1142/S0219199709003582
M3 - Article
AN - SCOPUS:70350536288
SN - 0219-1997
VL - 11
SP - 771
EP - 781
JO - Communications in Contemporary Mathematics
JF - Communications in Contemporary Mathematics
IS - 5
ER -