Seamless Temporal Gait Evaluation during Walking and Running Using Two IMU Sensors

Yonatan Hutabarat, Dai Owaki, Mitsuhiro Hayashibe

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Citation (Scopus)

Abstract

In this study, we proposed a framework for extracting gait events and extensive temporal features, seamlessly, during walking and running on a treadmill by constructing a finite state machine (FSM) transition rules based on two IMU sensors attached to the back of the shoes. Detailed innerclass states were defined to recognize the double support phase on walking gait and the double flight phase on running gait. Further, an in-depth speed-based analysis of temporal gait features can be performed for each tested speed with an automatic speed change detection algorithm based on the moving average filter applied to motion intensity data. The results have demonstrated that the FSM can accurately distinguish walking gait and running gait while also extract a detailed gait phase, respectively. This finding may contribute to a more flexible gait analysis where a change in speed or transition from walk to run can be anticipated and recognized accordingly.

Original languageEnglish
Title of host publication43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6835-6840
Number of pages6
ISBN (Electronic)9781728111797
DOIs
Publication statusPublished - 2021
Event43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021 - Virtual, Online, Mexico
Duration: 2021 Nov 12021 Nov 5

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
Country/TerritoryMexico
CityVirtual, Online
Period21/11/121/11/5

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Seamless Temporal Gait Evaluation during Walking and Running Using Two IMU Sensors'. Together they form a unique fingerprint.

Cite this