Abstract
Formic acid (FA) is one of the most promising vectors for sustainable hydrogen energy and it can be synthesized from renewable biomass resources. In this work, a range of heteropolyacid derived temperature-responsive catalysts (ChnH4-nPMo11VO40, n=1–3) were prepared by modifying H3PMo12O40 heteropolyacid with an oxidation site V5+ and temperature-responsive monomer choline chloride (Ch+), and used for the cascade conversion of biomass derived cellulose into FA via hydrolysis-oxidation in water. The ChH3PMo11VO40 with a Ch/H ratio of 1/3 exhibited an outstanding catalytic performance to give a 49.5% yield of FA at 165 °C after 3 h reaction time. Catalytic activity of ChnH4-nPMo11VO40 was found to be related to its amount of H+ and V5+, while the recyclable ability of ChnH4-nPMo11VO40 was found to be related to its amount of Ch+. The as-prepared catalyst could be perfectly recycled with a single decrease the temperature of reaction systems, and be reused four times with limit loss in catalytic activity. The developed temperature-responsive catalysts have both advantages of homogeneous catalyst and heterogeneous catalyst, which should have potential application in other reactions of lignocellulosic biomass valorization.
Original language | English |
---|---|
Pages (from-to) | 139-146 |
Number of pages | 8 |
Journal | Renewable Energy |
Volume | 185 |
DOIs | |
Publication status | Published - 2022 Feb |
Externally published | Yes |
Keywords
- Biomass derived
- Catalytic oxidation
- Heterogeneous catalyst
- Homogeneous catalyst
- Organic acid
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment