Semaphorin3D Guides Retinal Axons along the Dorsoventral Axis of the Tectum

Yan Liu, Jason Berndt, Fengyun Su, Hiroshi Tawarayama, Wataru Shoji, John Y. Kuwada, Mary C. Halloran

Research output: Contribution to journalArticlepeer-review

57 Citations (Scopus)


We examined the role of Sema3D, a semaphorin of previously unknown function, in guiding retinal ganglion cell (RGC) axons to the optic tectum in the developing zebrafish. Sema3D is expressed more strongly in the ventral versus dorsal tectum, suggesting that it may participate in guiding RGC axons along the dorsoventral axis of the tectum. Ubiquitous misexpression of Sema3D in transgenic zebrafish inhibits ventral but not dorsal RGC axon growth. In addition, ventral RGC axons avoid or stop at individual cells misexpressing Sema3D along their pathway. Sema3D ubiquitous misexpression at later stages also causes ventral RGC axon arbors to spread more widely along the dorsoventral axis of the tectum. Knock-down of Sema3D with morpholino antisense causes ventral RGC axons to extend aberrantly into the ventral tectum. These results suggest that Sema3D in the ventral tectum normally acts to inhibit ventral RGCs from extending into ventral tectum, ensuring their correct innervation of dorsal tectum.

Original languageEnglish
Pages (from-to)310-318
Number of pages9
JournalJournal of Neuroscience
Issue number2
Publication statusPublished - 2004 Jan 14


  • Neuropilin
  • Retinal axon guidance
  • Retinotectal
  • Semaphorin
  • Topographic map
  • Transgenic zebrafish


Dive into the research topics of 'Semaphorin3D Guides Retinal Axons along the Dorsoventral Axis of the Tectum'. Together they form a unique fingerprint.

Cite this