Sequence analysis of the genome of carnation (Dianthus caryophyllus L.)

Masafumi Yagi, Shunichi Kosugi, Hideki Hirakawa, Akemi Ohmiya, Koji Tanase, Taro Harada, Kyutaro Kishimoto, Masayoshi Nakayama, Kazuo Ichimura, Takashi Onozaki, Hiroyasu Yamaguchi, Nobuhiro Sasaki, Taira Miyahara, Yuzo Nishizaki, Yoshihiro Ozeki, Noriko Nakamura, Takamasa Suzuki, Yoshikazu Tanaka, Shusei Sato, Kenta ShirasawaSachiko Isobe, Yoshinori Miyamura, Akiko Watanabe, Shinobu Nakayama, Yoshie Kishida, Mitsuyo Kohara, Satoshi Tabata

    Research output: Contribution to journalArticlepeer-review

    87 Citations (Scopus)


    The whole-genome sequence of carnation (Dianthus caryophyllus L.) cv. 'Francesco' was determined using a combination of different new-generation multiplex sequencing platforms. The total length of the non-redundant sequences was 568 887 315 bp, consisting of 45 088 scaffolds, which covered 91% of the 622 Mb carnation genome estimated by k-mer analysis. The N50 values of contigs and scaffolds were 16 644 bp and 60 737 bp, respectively, and the longest scaffold was 1 287 144 bp. The average GC content of the contig sequences was 36%. A total of 1050, 13, 92 and 143 genes for tRNAs, rRNAs, snoRNA and miRNA, respectively, were identified in the assembled genomic sequences. For protein-encoding genes, 43 266 complete and partial gene structures excluding those in transposable elements were deduced. Gene coverage was ∼98%, as deduced from the coverage of the core eukaryotic genes. Intensive characterization of the assigned carnation genes and comparison with those of other plant species revealed characteristic features of the carnation genome. The results of this study will serve as a valuable resource for fundamental and applied research of carnation, especially for breeding new carnation varieties. Further information on the genomic sequences is available at

    Original languageEnglish
    Pages (from-to)231-241
    Number of pages11
    JournalDNA Research
    Issue number3
    Publication statusPublished - 2014 Jun


    • Dianthus caryophyllus L.
    • carnation
    • gene prediction
    • genome sequencing

    ASJC Scopus subject areas

    • Molecular Biology
    • Genetics


    Dive into the research topics of 'Sequence analysis of the genome of carnation (Dianthus caryophyllus L.)'. Together they form a unique fingerprint.

    Cite this