TY - JOUR
T1 - Shared autonomy system for tracked vehicles on rough terrain based on continuous three-dimensional terrain scanning
AU - Okada, Yoshito
AU - Nagatani, Keiji
AU - Yoshida, Kazuya
AU - Tadokoro, Satoshi
AU - Yoshida, Tomoaki
AU - Koyanagi, Eiji
PY - 2011/11
Y1 - 2011/11
N2 - Tracked vehicles are frequently used as search-and-rescue robots for exploring disaster areas. To enhance their ability to traverse rough terrasome of these robots are equipped with swingable subtracks. However, manual control of such subtracks also increases the operator's workload, particularly in teleoperation with limited camera views. To eliminate this trade-off, we have developed a shared autonomy system using an autonomous controller for subtracks that is based on continuous three-dimensional terrain scanning. Using this system, the operator has only to specify the direction of travel to the robot, following which the robot traverses rough terrain using autonomously generated subtrack motions. In our system, real-time terrain slices near the robot are obtained using two or three LIDAR (laser imaging detection and ranging) sensors, and these terrain slices are integrated to generate three-dimensional terrain information. In this paper, we introduce an autonomous controller for subtracks and validate the reliability of a shared autonomy system on actual rough terrains through experimental results.
AB - Tracked vehicles are frequently used as search-and-rescue robots for exploring disaster areas. To enhance their ability to traverse rough terrasome of these robots are equipped with swingable subtracks. However, manual control of such subtracks also increases the operator's workload, particularly in teleoperation with limited camera views. To eliminate this trade-off, we have developed a shared autonomy system using an autonomous controller for subtracks that is based on continuous three-dimensional terrain scanning. Using this system, the operator has only to specify the direction of travel to the robot, following which the robot traverses rough terrain using autonomously generated subtrack motions. In our system, real-time terrain slices near the robot are obtained using two or three LIDAR (laser imaging detection and ranging) sensors, and these terrain slices are integrated to generate three-dimensional terrain information. In this paper, we introduce an autonomous controller for subtracks and validate the reliability of a shared autonomy system on actual rough terrains through experimental results.
UR - http://www.scopus.com/inward/record.url?scp=80054067285&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=80054067285&partnerID=8YFLogxK
U2 - 10.1002/rob.20416
DO - 10.1002/rob.20416
M3 - Article
AN - SCOPUS:80054067285
SN - 1556-4959
VL - 28
SP - 875
EP - 893
JO - Journal of Field Robotics
JF - Journal of Field Robotics
IS - 6
ER -