TY - GEN
T1 - Significance of computational spanwise domain length on LES for the flowfield with large vortex structure
AU - Fukumoto, Hiroaki
AU - Aono, Hikaru
AU - Tanaka, Motofumi
AU - Matsuda, Hisashi
AU - Osako, Toshiki
AU - Nonomura, Taku
AU - Oyama, Akira
AU - Fujii, Kozo
N1 - Publisher Copyright:
© 2016, American Institute of Aeronautics and Astronautics Inc, AIAA. All rights reserved.
PY - 2016
Y1 - 2016
N2 - In this study, the effects of the computational spanwise domain length on the flowfield with massive separation and on the flowfield with dynamic stall are investigated by large-eddy simulation. The objective airfoil is NACA0012 and the chord-based Reynolds number is of 2.56 × 105. The objective flowfields are that around a fixed angle of attack of 10 and 25 degrees, and that around a pitching airfoil between AoA of 5 degrees and 25 degrees. The spanwise length effect become significant after the stall, as observed as the attenuation of the large vortices. Observations of the flowfield clarified that the undulation of two large vortices from the leading edge and the trailing edge is one of the mechanisms for the spanwise length effects. The qualitative analysis for this mechanism is performed to address the sufficient spanwise length, and the spanwise length have to be at least 1.0c for the flowfield with large vortex structures so as to resolve its spanwise distribution.
AB - In this study, the effects of the computational spanwise domain length on the flowfield with massive separation and on the flowfield with dynamic stall are investigated by large-eddy simulation. The objective airfoil is NACA0012 and the chord-based Reynolds number is of 2.56 × 105. The objective flowfields are that around a fixed angle of attack of 10 and 25 degrees, and that around a pitching airfoil between AoA of 5 degrees and 25 degrees. The spanwise length effect become significant after the stall, as observed as the attenuation of the large vortices. Observations of the flowfield clarified that the undulation of two large vortices from the leading edge and the trailing edge is one of the mechanisms for the spanwise length effects. The qualitative analysis for this mechanism is performed to address the sufficient spanwise length, and the spanwise length have to be at least 1.0c for the flowfield with large vortex structures so as to resolve its spanwise distribution.
UR - http://www.scopus.com/inward/record.url?scp=85007595742&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85007595742&partnerID=8YFLogxK
U2 - 10.2514/6.2016-0336
DO - 10.2514/6.2016-0336
M3 - Conference contribution
AN - SCOPUS:85007595742
SN - 9781624103933
T3 - 54th AIAA Aerospace Sciences Meeting
BT - 54th AIAA Aerospace Sciences Meeting
PB - American Institute of Aeronautics and Astronautics Inc, AIAA
T2 - 54th AIAA Aerospace Sciences Meeting, 2016
Y2 - 4 January 2016 through 8 January 2016
ER -