Simulation of nanoscale domain growth for ferroelectric recording

Kenji Fukuzawa, Yoshiomi Hiranaga, Yasuo Cho

Research output: Contribution to journalArticlepeer-review

Abstract

The growth process of nm-scale polarization domains is of great interest from a physical point of view and is also important in the design of ferroelectric recording, which is expected to be a high-density information recording method. To clarify the growth of nanoscale domains in probe-based ferroelectric recording, a simulation method based on the time-dependent Ginzburg-Landau equation has been developed. In this method, wall pinning is included in the phenomenological free energy by using a coercive field. The simulation results agreed with the experimental results for nanoscale domain writing using a probe. The developed method was used to determine the relationship between the smallest writable domain size and the material properties: smaller wall energy density and larger saturation polarization and coercive field enable writing smaller domains. The developed method is thus effective in designing ferroelectric recording systems for high-density information storage.

Original languageEnglish
Article number115117
JournalAIP Advances
Volume11
Issue number11
DOIs
Publication statusPublished - 2021 Nov 1

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Simulation of nanoscale domain growth for ferroelectric recording'. Together they form a unique fingerprint.

Cite this