Simulation of solidly mounted plate wave resonator with wide bandwidth using 0-th shear horizontal mode in LiNbO3 plate

Michio Kadota, Shuji Tanaka

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

A cognitive radio system using a vacant frequency band of digital TV channels (TV white space) requires a tunable filter with wide tunable ranges of center frequency and bandwidth. An ultra-wideband resonator is a key device to implement the tunable filter, because the tunable range is limited by the bandwidth (BW) of the resonators. A 0-th shear horizontal (SH0) mode plate wave resonator using an ultra-thin LiNbO3 plate is known to have a large electromechanical coupling factor, i.e., a large BW, but the structural fragility of the ultra-thin LiNbO3 plate is problematic. In this study, the feasibility of solidly mounted resonator type SH0 mode plate wave resonator was investigated systematically by finite element method simulation. The design parameters including the Euler angle, thickness of a LiNbO3 plate, and the material and thickness of an interdigital transducer were optimized. With the best design, a BW as wide as 26% is obtained.

Original languageEnglish
Article number07HD09
JournalJapanese Journal of Applied Physics
Volume54
Issue number7
DOIs
Publication statusPublished - 2015 Jul 1

Fingerprint

Dive into the research topics of 'Simulation of solidly mounted plate wave resonator with wide bandwidth using 0-th shear horizontal mode in LiNbO3 plate'. Together they form a unique fingerprint.

Cite this