Snf2 Proteins Are Required to Generate Gamete Pronuclei in Tetrahymena thermophila

Yasuhiro Fukuda, Takahiko Akematsu, Hironori Bando, Kentaro Kato

Research output: Contribution to journalArticlepeer-review


During sexual reproduction/conjugation of the ciliate Tetrahymena thermophila, the germinal micronucleus undergoes meiosis resulting in four haploid micronuclei (hMICs). All hMICs undergo post-meiotic DNA double-strand break (PM-DSB) formation, cleaving their genome. DNA lesions are subsequently repaired in only one ‘selected’ hMIC, which eventually produces gametic pronuclei. DNA repair in the selected hMIC involves chromatin remodeling by switching from the heterochromatic to the euchromatic state of its genome. Here, we demonstrate that, among the 15 Tetrahymena Snf2 family proteins, a core of the ATP-dependent chromatin remodeling complex in Tetrahymena, the germline nucleus specific Iswi in Tetrahymena IswiGTt and Rad5Tt is crucial for the generation of gametic pronuclei. In either gene knockout, the selected hMIC which shows euchromatin markers such as lysine-acetylated histone H3 does not appear, but all hMICs in which markers for DNA lesions persist are degraded, indicating that both IswiGTt and Rad5Tt have important roles in repairing PM-DSB DNA lesions and remodeling chromatin for the euchromatic state in the selected hMIC.

Original languageEnglish
Article number2426
Issue number12
Publication statusPublished - 2022 Dec


  • DNA repair
  • Iswi
  • Rad5
  • Snf2 family proteins
  • Tetrahymena thermophila
  • chromatin remodeling
  • euchromatin
  • pronuclei

ASJC Scopus subject areas

  • Microbiology
  • Microbiology (medical)
  • Virology


Dive into the research topics of 'Snf2 Proteins Are Required to Generate Gamete Pronuclei in Tetrahymena thermophila'. Together they form a unique fingerprint.

Cite this