Soft confinement for polymer solutions

Research output: Contribution to journalArticlepeer-review

3 Citations (Scopus)

Abstract

As a model of soft confinement for polymers, we investigated equilibrium shapes of a flexible vesicle that contains a phase-separating polymer solution. To simulate such a system, we combined the phase field theory (PFT) for the vesicle and the self-consistent field theory (SCFT) for the polymer solution. We observed a transition from a symmetric prolate shape of the vesicle to an asymmetric pear shape induced by the domain structure of the enclosed polymer solution. Moreover, when a non-zero spontaneous curvature of the vesicle is introduced, a re-entrant transition between the prolate and the dumbbell shapes of the vesicle is observed. This re-entrant transition is explained by considering the competition between the loss of conformational entropy and that of translational entropy of polymer chains due to the confinement by the deformable vesicle. This finding is in accordance with the recent experimental result reported by Terasawa et al. (Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 5249).

Original languageEnglish
Article number28003
JournalEPL
Volume107
Issue number2
DOIs
Publication statusPublished - 2014 Jul 1

ASJC Scopus subject areas

  • Physics and Astronomy(all)

Fingerprint

Dive into the research topics of 'Soft confinement for polymer solutions'. Together they form a unique fingerprint.

Cite this