TY - JOUR
T1 - Spectroscopic properties, concentration quenching, and prediction of infrared laser emission of yb3+-doped KY3F10 cubic crystal
AU - Ito, M.
AU - Boulon, Georges
AU - Bensalah, A.
AU - Guyot, Y.
AU - Goutaudier, C.
AU - Sato, H.
PY - 2007/12
Y1 - 2007/12
N2 - We investigate the prediction of the infrared laser emission in the Yb3+-doped cubic KY3F10 crystal that can be pumped by a laser diode. Bulky single crystals have been grown by the Czochralski technique at Tohoku University, and crystalline fibers have been grown by the laser heated pedestal growth technique at Claude Bernard/Lyon 1 University. Absorption and emission spectra were recorded to contribute to the determination of electronic and vibronic energy levels by using in addition the Raman spectrum and the barycenter law. Yb3+ concentration dependence of the 2F5/2 experimental decay time was analyzed using concentration gradient fibers in order to attempt to understand involved concentration quenching mechanisms. Under Yb3+ ion infrared pumping, self-trapping has been observed at low concentration, whereas upconversion nonradiative energy transfer to unexpected rare-earth impurities (Er3+,Tm3+) has been observed in the visible region and interpreted with a limited diffusion process within the Yb3+ doping ion subsystem toward impurities. Main parameters useful for a theoretical approach of laser potentiality have been given and compared with other fluoride crystals.
AB - We investigate the prediction of the infrared laser emission in the Yb3+-doped cubic KY3F10 crystal that can be pumped by a laser diode. Bulky single crystals have been grown by the Czochralski technique at Tohoku University, and crystalline fibers have been grown by the laser heated pedestal growth technique at Claude Bernard/Lyon 1 University. Absorption and emission spectra were recorded to contribute to the determination of electronic and vibronic energy levels by using in addition the Raman spectrum and the barycenter law. Yb3+ concentration dependence of the 2F5/2 experimental decay time was analyzed using concentration gradient fibers in order to attempt to understand involved concentration quenching mechanisms. Under Yb3+ ion infrared pumping, self-trapping has been observed at low concentration, whereas upconversion nonradiative energy transfer to unexpected rare-earth impurities (Er3+,Tm3+) has been observed in the visible region and interpreted with a limited diffusion process within the Yb3+ doping ion subsystem toward impurities. Main parameters useful for a theoretical approach of laser potentiality have been given and compared with other fluoride crystals.
UR - http://www.scopus.com/inward/record.url?scp=39449128020&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=39449128020&partnerID=8YFLogxK
U2 - 10.1364/JOSAB.24.003023
DO - 10.1364/JOSAB.24.003023
M3 - Article
AN - SCOPUS:39449128020
SN - 0740-3224
VL - 24
SP - 3023
EP - 3033
JO - Journal of the Optical Society of America B: Optical Physics
JF - Journal of the Optical Society of America B: Optical Physics
IS - 12
ER -