Statistical-mechanical approach to image processing

Research output: Contribution to journalReview articlepeer-review

143 Citations (Scopus)


The basic frameworks and techniques of the Bayesian approach to image restoration are reviewed from the statistical-mechanical point of view. First, a few basic notions in digital image processing are explained to convince the reader that statistical mechanics has a close formal similarity to this problem. Second, the basic formulation of the statistical estimation from the observed degraded image by using the Bayes formula is demonstrated. The relationship between Bayesian statistics and statistical mechanics is also listed. Particularly, it is explained that some correlation inequalities on the Nishimori line of the random spin model also play an important role in Bayesian image restoration. Third, the framework of Bayesian image restoration for binary images by means of the Ising model is reviewed. Some practical algorithms for binary image restoration are given by employing the mean-field and the Bethe approximations. Finally, Bayesian image restoration for a grey-level image using the Gaussian model is reviewed, and the Gaussian model is extended to a more practical probabilistic model by introducing the line state to treat the effects of edges. The line state is also extended to quantized values.

Original languageEnglish
Pages (from-to)R81-R150
JournalJournal of Physics A: Mathematical and General
Issue number37
Publication statusPublished - 2002 Sept 20


Dive into the research topics of 'Statistical-mechanical approach to image processing'. Together they form a unique fingerprint.

Cite this