TY - JOUR
T1 - Stimulation of melanoblast pigmentation by 8-methoxypsoralen
T2 - The involvement of microphthalmia-associated transcription factor, the protein kinase A signal pathway, and proteasome-mediated degradation
AU - Lei, Tie Chi
AU - Virador, Victoria
AU - Yasumoto, Ken Ichi
AU - Vieira, Wilfred D.
AU - Toyofuku, Kazutomo
AU - Hearing, Vincent J.
PY - 2002
Y1 - 2002
N2 - In this study, we used melb-a melanoblasts as a model to study mechanisms involved in stimulating melanocyte function in vitiliginous skin following exposure to 8-methoxypsoralen (8MOP). Melanin content and tyrosinase activity increased 3- and 7-fold, respectively, in melanoblasts treated with 8MOP for 6 d compared with untreated controls. The intracellular signal pathways involved in 8MOP-induced effects on melanoblasts were investigated, particularly the roles of protein kinase A and protein kinase C. Forskolin, a protein kinase A activator, mimicked and enhanced the 8MOP stimulation of melanoblast pigmentation whereas a protein kinase C activator, 1-oleoyl-2-acetylglycerol, had no effect, indicating that the protein kinase A pathway is involved rather than the protein kinase C pathway. Those observations were confirmed using inhibitors of the protein kinase A or protein kinase C pathways. Western blot and semiquantitative reverse transcriptase polymerase chain reaction were performed to assess the protein and mRNA expression levels of microphthalmia-associated transcription factor and tyrosinase in melanoblasts treated with 8MOP for 3 h, 6 h, 1 d, 3 d, or 6 d. Incubation with 8MOP stimulated microphthalmia-associated transcription factor protein and mRNA levels within 3 h, but, in contrast, tyrosinase mRNA and protein levels did not increase following 8MOP treatment until 1 d after treatment. The proteasome inhibitor lactacystin blocked the proteasome-mediated proteolysis of tyrosinase, and its effect on proteasomal function was enhanced by 8MOP. Taken together, these results show that 8MOP functions by initially stimulating levels of microphthalmia-associated transcription factor expression via activation of the protein kinase A pathway, which thereby stimulates tyrosinase expression and function and eventually leads to dramatic increases in melanin production by melanoblasts.
AB - In this study, we used melb-a melanoblasts as a model to study mechanisms involved in stimulating melanocyte function in vitiliginous skin following exposure to 8-methoxypsoralen (8MOP). Melanin content and tyrosinase activity increased 3- and 7-fold, respectively, in melanoblasts treated with 8MOP for 6 d compared with untreated controls. The intracellular signal pathways involved in 8MOP-induced effects on melanoblasts were investigated, particularly the roles of protein kinase A and protein kinase C. Forskolin, a protein kinase A activator, mimicked and enhanced the 8MOP stimulation of melanoblast pigmentation whereas a protein kinase C activator, 1-oleoyl-2-acetylglycerol, had no effect, indicating that the protein kinase A pathway is involved rather than the protein kinase C pathway. Those observations were confirmed using inhibitors of the protein kinase A or protein kinase C pathways. Western blot and semiquantitative reverse transcriptase polymerase chain reaction were performed to assess the protein and mRNA expression levels of microphthalmia-associated transcription factor and tyrosinase in melanoblasts treated with 8MOP for 3 h, 6 h, 1 d, 3 d, or 6 d. Incubation with 8MOP stimulated microphthalmia-associated transcription factor protein and mRNA levels within 3 h, but, in contrast, tyrosinase mRNA and protein levels did not increase following 8MOP treatment until 1 d after treatment. The proteasome inhibitor lactacystin blocked the proteasome-mediated proteolysis of tyrosinase, and its effect on proteasomal function was enhanced by 8MOP. Taken together, these results show that 8MOP functions by initially stimulating levels of microphthalmia-associated transcription factor expression via activation of the protein kinase A pathway, which thereby stimulates tyrosinase expression and function and eventually leads to dramatic increases in melanin production by melanoblasts.
KW - Melanoblast
KW - Mitf
KW - Pigmentation
KW - Psoralens
UR - http://www.scopus.com/inward/record.url?scp=0036911380&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036911380&partnerID=8YFLogxK
U2 - 10.1046/j.1523-1747.2002.19607.x
DO - 10.1046/j.1523-1747.2002.19607.x
M3 - Article
C2 - 12485437
AN - SCOPUS:0036911380
SN - 0022-202X
VL - 119
SP - 1341
EP - 1349
JO - Journal of Investigative Dermatology
JF - Journal of Investigative Dermatology
IS - 6
ER -