TY - JOUR
T1 - Strain vessel hypothesis
T2 - A viewpoint for linkage of albuminuria and cerebro-cardiovascular risk
AU - Ito, Sadayoshi
AU - Nagasawa, Tasuku
AU - Abe, Michiaki
AU - Mori, Takefumi
N1 - Copyright:
Copyright 2011 Elsevier B.V., All rights reserved.
PY - 2009
Y1 - 2009
N2 - Albuminuria is closely associated with stroke and cardiovascular diseases (CVDs) as well as the salt sensitivity of blood pressure (BP). Although albuminuria may reflect generalized endothelial dysfunction, there may be more specific hemodynamic mechanisms underlying these associations. Cerebral hemorrhage and infarction occur most frequently in the area of small perforating arteries that are exposed to high pressure and that have to maintain strong vascular tone in order to provide large pressure gradients from the parent vessels to the capillaries. Analogous to the perforating arteries are the glomerular afferent arterioles of the juxtamedullary nephrons. Hypertensive vascular damage occurs first and more severely in the juxtamedullary glomeruli. Therefore, albuminuria may be an early sign of vascular damages imposed on 'strain vessels' such as perforating arteries and juxtamedullary afferent arterioles. Coronary circulation also occurs under unique hemodynamic conditions, in which the entire epicardial segments are exposed to very high pressure with little flow during systolic phases. From the evolutionary point of view, we speculate that such circulatory systems in the vital organs are mandatory for survival under the danger of hypoperfusion due to difficult access to salt and water as well as high risks of wound injuries. In addition, albuminuria would indicate an impairment of renal medullary circulation, downstream from the juxtamedullary glomeruli, and therefore an impaired pressure natriuresis, which would lead to salt sensitivity of BP. Our 'strain vessel hypothesis' may explain why hypertension and diabetes, unforeseen in the concept of evolution, preferentially affect vital organs such as the brain, heart and kidney.
AB - Albuminuria is closely associated with stroke and cardiovascular diseases (CVDs) as well as the salt sensitivity of blood pressure (BP). Although albuminuria may reflect generalized endothelial dysfunction, there may be more specific hemodynamic mechanisms underlying these associations. Cerebral hemorrhage and infarction occur most frequently in the area of small perforating arteries that are exposed to high pressure and that have to maintain strong vascular tone in order to provide large pressure gradients from the parent vessels to the capillaries. Analogous to the perforating arteries are the glomerular afferent arterioles of the juxtamedullary nephrons. Hypertensive vascular damage occurs first and more severely in the juxtamedullary glomeruli. Therefore, albuminuria may be an early sign of vascular damages imposed on 'strain vessels' such as perforating arteries and juxtamedullary afferent arterioles. Coronary circulation also occurs under unique hemodynamic conditions, in which the entire epicardial segments are exposed to very high pressure with little flow during systolic phases. From the evolutionary point of view, we speculate that such circulatory systems in the vital organs are mandatory for survival under the danger of hypoperfusion due to difficult access to salt and water as well as high risks of wound injuries. In addition, albuminuria would indicate an impairment of renal medullary circulation, downstream from the juxtamedullary glomeruli, and therefore an impaired pressure natriuresis, which would lead to salt sensitivity of BP. Our 'strain vessel hypothesis' may explain why hypertension and diabetes, unforeseen in the concept of evolution, preferentially affect vital organs such as the brain, heart and kidney.
UR - http://www.scopus.com/inward/record.url?scp=67650372806&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=67650372806&partnerID=8YFLogxK
U2 - 10.1038/hr.2008.27
DO - 10.1038/hr.2008.27
M3 - Review article
C2 - 19262469
AN - SCOPUS:67650372806
SN - 0916-9636
VL - 32
SP - 115
EP - 121
JO - Hypertension Research
JF - Hypertension Research
IS - 2
ER -