TY - JOUR
T1 - Structural insights into ligand recognition by the lysophosphatidic acid receptor LPA 6
AU - Taniguchi, Reiya
AU - Inoue, Asuka
AU - Sayama, Misa
AU - Uwamizu, Akiharu
AU - Yamashita, Keitaro
AU - Hirata, Kunio
AU - Yoshida, Masahito
AU - Tanaka, Yoshiki
AU - Kato, Hideaki E.
AU - Nakada-Nakura, Yoshiko
AU - Otani, Yuko
AU - Nishizawa, Tomohiro
AU - Doi, Takayuki
AU - Ohwada, Tomohiko
AU - Ishitani, Ryuichiro
AU - Aoki, Junken
AU - Nureki, Osamu
N1 - Publisher Copyright:
© 2017 Macmillan Publishers Limited, part of Springer Nature.
PY - 2017/8/17
Y1 - 2017/8/17
N2 - Lysophosphatidic acid (LPA) is a bioactive lipid composed of a phosphate group, a glycerol backbone, and a single acyl chain that varies in length and saturation. LPA activates six class A G-protein-coupled receptors to provoke various cellular reactions. Because LPA signalling has been implicated in cancer and fibrosis, the LPA receptors are regarded as promising drug targets. The six LPA receptors are subdivided into the endothelial differentiation gene (EDG) family (LPA 1-LPA 3) and the phylogenetically distant non-EDG family (LPA 4-LPA 6). The structure of LPA 1 has enhanced our understanding of the EDG family of LPA receptors. By contrast, the functional and pharmacological characteristics of the non-EDG family of LPA receptors have remained unknown, owing to the lack of structural information. Although the non-EDG LPA receptors share sequence similarity with the P2Y family of nucleotide receptors, the LPA recognition mechanism cannot be deduced from the P2Y 1 and P2Y 12 structures because of the large differences in the chemical structures of their ligands. Here we determine the 3.2 Å crystal structure of LPA 6, the gene deletion of which is responsible for congenital hair loss, to clarify the ligand recognition mechanism of the non-EDG family of LPA receptors. Notably, the ligand-binding pocket of LPA 6 is laterally open towards the membrane, and the acyl chain of the lipid used for the crystallization is bound within this pocket, indicating the binding mode of the LPA acyl chain. Docking and mutagenesis analyses also indicated that the conserved positively charged residues within the central cavity recognize the phosphate head group of LPA by inducing an inward shift of transmembrane helices 6 and 7, suggesting that the receptor activation is triggered by this conformational rearrangement.
AB - Lysophosphatidic acid (LPA) is a bioactive lipid composed of a phosphate group, a glycerol backbone, and a single acyl chain that varies in length and saturation. LPA activates six class A G-protein-coupled receptors to provoke various cellular reactions. Because LPA signalling has been implicated in cancer and fibrosis, the LPA receptors are regarded as promising drug targets. The six LPA receptors are subdivided into the endothelial differentiation gene (EDG) family (LPA 1-LPA 3) and the phylogenetically distant non-EDG family (LPA 4-LPA 6). The structure of LPA 1 has enhanced our understanding of the EDG family of LPA receptors. By contrast, the functional and pharmacological characteristics of the non-EDG family of LPA receptors have remained unknown, owing to the lack of structural information. Although the non-EDG LPA receptors share sequence similarity with the P2Y family of nucleotide receptors, the LPA recognition mechanism cannot be deduced from the P2Y 1 and P2Y 12 structures because of the large differences in the chemical structures of their ligands. Here we determine the 3.2 Å crystal structure of LPA 6, the gene deletion of which is responsible for congenital hair loss, to clarify the ligand recognition mechanism of the non-EDG family of LPA receptors. Notably, the ligand-binding pocket of LPA 6 is laterally open towards the membrane, and the acyl chain of the lipid used for the crystallization is bound within this pocket, indicating the binding mode of the LPA acyl chain. Docking and mutagenesis analyses also indicated that the conserved positively charged residues within the central cavity recognize the phosphate head group of LPA by inducing an inward shift of transmembrane helices 6 and 7, suggesting that the receptor activation is triggered by this conformational rearrangement.
UR - http://www.scopus.com/inward/record.url?scp=85027844480&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85027844480&partnerID=8YFLogxK
U2 - 10.1038/nature23448
DO - 10.1038/nature23448
M3 - Article
C2 - 28792932
AN - SCOPUS:85027844480
SN - 0028-0836
VL - 548
SP - 356
EP - 360
JO - Nature
JF - Nature
IS - 7667
ER -