Abstract
The structure quality of deep X-ray lithography components strongly depends on the quality of the applied X-ray mask. In this article we compare the results obtained with two different mask types. Sophisticated working masks generated by e-beam lithography, soft X-ray lithography and electroplating of gold absorbers on a titanium mask membrane have been fabricated at the Institute for Microstructure Technology, Research Center, Karlsruhe (FZK/IMT), Germany. Prototype masks generated by e-beam lithography, optical lithography and electroplating of gold absorbers on a polyimide mask membrane have been fabricated by Optnics Precision, Japan, with the aim to offer commercially available low cost masks. Both mask types were applied to pattern PMMA resist layers of 300-750 μm thickness at the 2.5 GeV electron storage ring ANKA, Germany, using comparable process parameters. FZK/IMT masks provide microstructures with significantly better structure quality. The layout area, however, is currently limited to 12 cm2, and the Ti mask membrane tends to lead to a slight resist surface attack, such as rounding of the resist edges. Optnics masks provide microstructures with reduced structure quality due to sidewall striations (sidewall roughness up to 2 μm) and thermal distortions (of up to 3-5 μm) which limit the potential scope of applications. They could nevertheless potentially be applied as low quality, low cost X-ray masks. High resolution and high accuracy applications, however, require more sophisticated but also more expensive masks, like the Ti-masks from FZK/IMT.
Original language | English |
---|---|
Pages (from-to) | 349-353 |
Number of pages | 5 |
Journal | Microsystem Technologies |
Volume | 13 |
Issue number | 3-4 |
DOIs | |
Publication status | Published - 2007 Feb |
Externally published | Yes |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Condensed Matter Physics
- Hardware and Architecture
- Electrical and Electronic Engineering