TY - JOUR
T1 - Structures and stability of lifted combustion zones in preheated oxidizer
AU - Ruan, Jiongming
AU - Kobayashi, Hideaki
AU - Niioka, Takashi
AU - Abuliti, Abudula
AU - Iida, Fumio
PY - 2002/8
Y1 - 2002/8
N2 - The structures and stability of lifted combustion zones have been simulated with detailed chemistry and transport properties in an axisymmetric laminar fuel (CH 4) jet and outer co-flow of the (O 2 + N 2) oxidizer whose initial temperature is 300 K, 700 K and 1 200 K. A set of numerical simulations was executed by increasing the N 2 dilution ratio, Z (mole fraction of N 2 in the oxidizer). The results showed that at 300 K, the lifted combustion zone had a triple flame structure where the rich premixed wing is smaller than the lean one and the trailing diffusion flame immediately inclined to the fuel side from the triple point as well as the leading edge of the triple flame was shifted away from the jet axis as Z increased. As the initial temperature increased, the combustion zones were lifted at larger Z values than the one at 300 K. Especially, for 1 200 K, it was found that the lifted combustion zones, when expressed in terms of the heat release rate, have become so weak that a flameless triple combustion zone was formed due to the high dilution ratio and high preheat temperature. The numerical simulations on the response of the lifted triple combustion zone to the initial fuel velocity were also carried out, and the results showed that the lifted combustion zone using a high preheated temperature was very stable in the near field.
AB - The structures and stability of lifted combustion zones have been simulated with detailed chemistry and transport properties in an axisymmetric laminar fuel (CH 4) jet and outer co-flow of the (O 2 + N 2) oxidizer whose initial temperature is 300 K, 700 K and 1 200 K. A set of numerical simulations was executed by increasing the N 2 dilution ratio, Z (mole fraction of N 2 in the oxidizer). The results showed that at 300 K, the lifted combustion zone had a triple flame structure where the rich premixed wing is smaller than the lean one and the trailing diffusion flame immediately inclined to the fuel side from the triple point as well as the leading edge of the triple flame was shifted away from the jet axis as Z increased. As the initial temperature increased, the combustion zones were lifted at larger Z values than the one at 300 K. Especially, for 1 200 K, it was found that the lifted combustion zones, when expressed in terms of the heat release rate, have become so weak that a flameless triple combustion zone was formed due to the high dilution ratio and high preheat temperature. The numerical simulations on the response of the lifted triple combustion zone to the initial fuel velocity were also carried out, and the results showed that the lifted combustion zone using a high preheated temperature was very stable in the near field.
KW - Flame structure and stability triple flame
KW - Laminar lifted flame
KW - Numerical simulation
UR - http://www.scopus.com/inward/record.url?scp=0036701092&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0036701092&partnerID=8YFLogxK
U2 - 10.1299/jsmeb.45.499
DO - 10.1299/jsmeb.45.499
M3 - Article
AN - SCOPUS:0036701092
SN - 1340-8054
VL - 45
SP - 499
EP - 505
JO - JSME International Journal, Series B: Fluids and Thermal Engineering
JF - JSME International Journal, Series B: Fluids and Thermal Engineering
IS - 3
ER -