TY - GEN
T1 - Study of medium-scale traveling ionospheric disturbances (MSTID) with sounding rockets and ground observations
AU - Yamamoto, Mamoru
AU - Kato, Tomohiro
AU - Ishisaka, Keigo
AU - Yokoyama, Tatsuhiro
AU - Iwagami, Naomoto
AU - Takahashi, Takao
AU - Tanaka, Makoto
AU - Endo, Ken
AU - Kumamoto, Atsushi
AU - Watanabe, Shigeto
AU - Yamamoto, Masa Yuki
AU - Abe, Takumi
AU - Saito, Susumu
AU - Tsugawa, Takuya
AU - Nishioka, Michi
AU - Bernhardt, Paul
AU - Larsen, Miguel
PY - 2014/10/17
Y1 - 2014/10/17
N2 - Medium-scale traveling ionospheric disturbance (MSTID) is an interesting phenomenon in the F-region. The MSTID is frequent in summer nighttime over Japan, showing wave structures with wavelengths of 100-200 km, periodicity of about 1 hour, and propagation toward the southwest. The phenomena are observed by the total electron content (TEC) from GEONET, Japanese dense network of GPS receivers, and 630 nm airglow imagers as horizontal pattern. It was also measured as Spread-F events of ionograms or as field-aligned echoes of the MU radar. MSTID was, in the past, explained by Perkins instability while its low growth rate was a problem [1]. Recently 3D simulation study by Yokoyama et al. [2] hypothesized a generation mechanism of the MSTID, which stands on electromagnetic E/F-region coupling of the ionosphere. The hypothesis is that the MSTID first grows with polarization electric fields from sporadic-E, then show spatial structures resembling to the Perkins instability. We recently conducted an observation campaign to check this hypothesis. We launched JASA ISAS sounding rockets S-310-42 and S-520-27 at 23:00 JST and 23:57JST on July 20, 2013 while an MSTID event was monitored in real-time by the GPS-TEC from GEONET. We found 1-5mV/m northeastward/eastward electric fields during the flight. Variation of electric fileds was associated with horizontal distribution of plasma density. Wind velocity was measured by the TME and Lithium releases from S-310-42 and S-520-27 rockets, respectively, showing southward wind near the sporadic-E layer heights. These results are consistent to the expected generation mechanism shown above. In the presentation we will discuss electric-field results and its relationship with plasma density variability together with preliminary results from the neutral-wind observations.
AB - Medium-scale traveling ionospheric disturbance (MSTID) is an interesting phenomenon in the F-region. The MSTID is frequent in summer nighttime over Japan, showing wave structures with wavelengths of 100-200 km, periodicity of about 1 hour, and propagation toward the southwest. The phenomena are observed by the total electron content (TEC) from GEONET, Japanese dense network of GPS receivers, and 630 nm airglow imagers as horizontal pattern. It was also measured as Spread-F events of ionograms or as field-aligned echoes of the MU radar. MSTID was, in the past, explained by Perkins instability while its low growth rate was a problem [1]. Recently 3D simulation study by Yokoyama et al. [2] hypothesized a generation mechanism of the MSTID, which stands on electromagnetic E/F-region coupling of the ionosphere. The hypothesis is that the MSTID first grows with polarization electric fields from sporadic-E, then show spatial structures resembling to the Perkins instability. We recently conducted an observation campaign to check this hypothesis. We launched JASA ISAS sounding rockets S-310-42 and S-520-27 at 23:00 JST and 23:57JST on July 20, 2013 while an MSTID event was monitored in real-time by the GPS-TEC from GEONET. We found 1-5mV/m northeastward/eastward electric fields during the flight. Variation of electric fileds was associated with horizontal distribution of plasma density. Wind velocity was measured by the TME and Lithium releases from S-310-42 and S-520-27 rockets, respectively, showing southward wind near the sporadic-E layer heights. These results are consistent to the expected generation mechanism shown above. In the presentation we will discuss electric-field results and its relationship with plasma density variability together with preliminary results from the neutral-wind observations.
UR - http://www.scopus.com/inward/record.url?scp=84919754795&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84919754795&partnerID=8YFLogxK
U2 - 10.1109/URSIGASS.2014.6929916
DO - 10.1109/URSIGASS.2014.6929916
M3 - Conference contribution
AN - SCOPUS:84919754795
T3 - 2014 31th URSI General Assembly and Scientific Symposium, URSI GASS 2014
BT - 2014 31th URSI General Assembly and Scientific Symposium, URSI GASS 2014
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 31st General Assembly and Scientific Symposium of the International Union of Radio Science, URSI GASS 2014
Y2 - 16 August 2014 through 23 August 2014
ER -