Abstract
Mushroomlike photonic band gap (PBG) structures exhibit two band gap characteristics: surface-wave suppression and in-phase reflectivity. The fundamental electromagnetic properties and the relationship between the surface-wave suppression band gap and the plane-wave reflection phase band are investigated and clarified by a finite-element full-wave analysis. The results of the plane-wave bistatic reflection experiments on mushroomlike PBG plates in an anechoic chamber are in good agreement with those of numerical simulation, confirming the phenomenon of dual in-phase reflection, i.e., dual-resonant behavior, for a transverse magnetic polarization plane wave at oblique incidence on a mushroomlike PBG surface. A modified local resonance cavity cell model of a PBG structure is presented to provide insight into the physical mechanism of dual-resonant behavior.
Original language | English |
---|---|
Article number | 023513 |
Journal | Journal of Applied Physics |
Volume | 103 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2008 |