Abstract
Odor-shock memory in Drosophila melanogaster consists of heterogeneous components each with different dynamics. We report that a null mutant for the evolutionarily conserved synaptic protein Synapsin entails a memory deficit selectively in early memory, leaving later memory as well as sensory motor function unaffected. Notably, a consolidated memory component remaining after cold-anesthesia is not impaired, suggesting that only anesthesia-sensitive memory [ASM] depends on Synapsin. The lack of Synapsin does not further impair the memory deficit of mutants for the rutabaga gene encoding the type I adenylyl cyclase. This suggests that cAMP signaling, through a Synapsin-dependent mechanism, may underlie the formation of a labile memory component.
Original language | English |
---|---|
Pages (from-to) | 76-79 |
Number of pages | 4 |
Journal | Learning and Memory |
Volume | 17 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2010 Feb |