Abstract
A previously proposed method for preparing monodispersed titania particles was extended to preparation of titania-coated silica spherical particles. The core silica particles with an average size of 264 nm were prepared with Stöber method. The titania-coating was performed in ethanol/acetonitrile solvent in the presence of silica particles by a sol-gel method with the use of titanium tetraisopropoxide (TTIP) and methylamine (MA) catalyst. Average size of the silica-titania particles decreased from 457 to 292 nm with an increase in concentration of silica particles. Coefficient of variation for the particle size was less than 5%. Colloidal crystals could be fabricated with a dip-coating technique and a sedimentation process, respectively. Measurements of reflectance revealed peaks based on the Bragg diffraction. Those peaks red-shifted with an increase in titania shell thickness because of a high refractive index of titania. Annealing at high temperature transformed crystal structure of titania shell from amorphous to anatase (500°C) and rutile (1000°C), which led to red-shift of reflection peak because of an increase in refractive index of titania due to the crystallization.
Original language | English |
---|---|
Pages (from-to) | 91-95 |
Number of pages | 5 |
Journal | Journal of Sol-Gel Science and Technology |
Volume | 38 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2006 Apr |
Keywords
- Coating
- Colloidal crystal
- Monodispersed particle
- Silica
- Sol-gel method
- Titania