TY - JOUR
T1 - Synthesis, structures, and properties of meso-phosphorylporphyrins
T2 - Self-organization through P-oxo-zinc coordination
AU - Matano, Yoshihiro
AU - Matsumoto, Kazuaki
AU - Terasaka, Yukiko
AU - Hotta, Hiroki
AU - Araki, Yasuyuki
AU - Ito, Osamu
AU - Shiro, Motoo
AU - Sasamori, Takahiro
AU - Tokitoh, Norihiro
AU - Imahori, Hiroshi
PY - 2007
Y1 - 2007
N2 - The synthesis, structures, and optical and electrochemical properties of meso-phosphorylporphyrins are described. The copper-catalyzed carbon-phosphorus cross-coupling reaction of a meso-iodoporphyrin with di-n-butyl phosphite and diphenylphosphane oxide has proved to be an efficient and general method for the synthesis of meso-phosphorylporphyrins. Zinc phosphorylporphyrins thus obtained readily undergo self-organization through Poxo-Zn coordination to form noncovalently linked, cofacial porphyrin dimers or linear oligomers, which have been characterized by spectroscopic methods and X-ray crystallographic analyses. In toluene, CH2Cl2, and CHCl3, the zinc phosphorylporphyrins exist mostly as dimers or monomers, depending on their concentrations, the temperature, and the presence of additives. The self-association constants for dimerization in toluene have been determined by UV/Vis absorption titration measurements. The meso-diphenylphosphorylporphyrin dimer displays excitonic coupling of the Soret band with a splitting energy of 940 cm-1. Fluorescence lifetimes of the zinc phosphorylporphyrins have been found to be affected only slightly by the concentration of the solution, and by the addition of triphenylphosphane oxide, suggesting that the effect of dimerization on their photodynamics in the Si state is negligible. On the other hand, the effect of dimerization is clearly reflected in their electrochemical oxidation processes, as the initially produced radical cations are efficiently delocalized over the two porphyrin rings. These findings demonstrate the potential utility of meso-phosphorylporphyrins as new models for the special pair in photosynthesis and as new building blocks for porphyrin-based supramolecular materials.
AB - The synthesis, structures, and optical and electrochemical properties of meso-phosphorylporphyrins are described. The copper-catalyzed carbon-phosphorus cross-coupling reaction of a meso-iodoporphyrin with di-n-butyl phosphite and diphenylphosphane oxide has proved to be an efficient and general method for the synthesis of meso-phosphorylporphyrins. Zinc phosphorylporphyrins thus obtained readily undergo self-organization through Poxo-Zn coordination to form noncovalently linked, cofacial porphyrin dimers or linear oligomers, which have been characterized by spectroscopic methods and X-ray crystallographic analyses. In toluene, CH2Cl2, and CHCl3, the zinc phosphorylporphyrins exist mostly as dimers or monomers, depending on their concentrations, the temperature, and the presence of additives. The self-association constants for dimerization in toluene have been determined by UV/Vis absorption titration measurements. The meso-diphenylphosphorylporphyrin dimer displays excitonic coupling of the Soret band with a splitting energy of 940 cm-1. Fluorescence lifetimes of the zinc phosphorylporphyrins have been found to be affected only slightly by the concentration of the solution, and by the addition of triphenylphosphane oxide, suggesting that the effect of dimerization on their photodynamics in the Si state is negligible. On the other hand, the effect of dimerization is clearly reflected in their electrochemical oxidation processes, as the initially produced radical cations are efficiently delocalized over the two porphyrin rings. These findings demonstrate the potential utility of meso-phosphorylporphyrins as new models for the special pair in photosynthesis and as new building blocks for porphyrin-based supramolecular materials.
KW - Cross-coupling
KW - P-O compounds
KW - Porphyrinoids
KW - Self-assembly
KW - X-ray diffraction
UR - http://www.scopus.com/inward/record.url?scp=33846485662&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33846485662&partnerID=8YFLogxK
U2 - 10.1002/chem.200600835
DO - 10.1002/chem.200600835
M3 - Article
C2 - 17042046
AN - SCOPUS:33846485662
SN - 0947-6539
VL - 13
SP - 891
EP - 901
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 3
ER -