TY - JOUR
T1 - Synthesizing of nanocomposite WC/MgO powders by mechanical solid-state reduction and subsequent plasma-activated sintering
AU - Sherif El-Eskandarany, M.
AU - Omori, M.
AU - Konno, T. J.
AU - Sumiyama, K.
AU - Hirai, T.
AU - Suzuki, K.
N1 - Funding Information:
Part of the present work was achieved when the first author was at his former address. The authors thank the referee for the critical suggestions. Many thanks to Messrs. Y. Murakami and S. Ito for their kind technical support during the SEM and TEM experiments. The first author thanks Ms. Mitsuko El-Eskandarany for her kind support during the development of the photos of the micrographs. This work was partially supported by a Grant-in-Aid for Developmental Scientific Research B (No. 06452323), given by the Ministry of Education, Japan.
PY - 2001
Y1 - 2001
N2 - A ceramic/ceramic nanocomposite powder of WC/MgO has been fabricated by high-energy ball milling a mixture of elemental Mg and powders of C with WO3 under an argon gas atmosphere at room temperature. During the early stage of milling (at 1.8 ks), the WO3 and C powders are embedded into the soft matrix of Mg (the reducing agent) particles to form coarse composite powders of the reactant materials. Increasing the milling time (to 22 ks) leads to the formation of fresh active surfaces of Mg, which have a high reducing potential and react with the WO3 in a typical oxidation/reduction reaction. At the end of this stage (at 43 ks), the Mg powders are oxidized to MgO, whereas the WO3 is reduced completely to metallic W. During the last stage of milling (86 to 173 ks), a solid-state reaction takes place between W and the unreacted C powders to yield nanocomposite WC/MgO particles. This end-product was consolidated in vacuum at 1963 K with a pressure of 19.6 to 38.2 MPa for 0.3 ks, using a plasma-activated sintering (PAS) method. The sintered sample is fully dense (above 99.5 pct of the theoretical density) and contains nanocrystalline grains of less than 50 nm in diameter. This fine grain structure offers an opportunity for the composite material to combine high values of two opposite properties, i.e., hardness and fracture toughness (Kc), of 15 GPa and 14 MPa√m, respectively. Here, we propose this nanocomposite material for a wide range of industrial applications, including tips for cutting tools and tips for oil drilling equipment.
AB - A ceramic/ceramic nanocomposite powder of WC/MgO has been fabricated by high-energy ball milling a mixture of elemental Mg and powders of C with WO3 under an argon gas atmosphere at room temperature. During the early stage of milling (at 1.8 ks), the WO3 and C powders are embedded into the soft matrix of Mg (the reducing agent) particles to form coarse composite powders of the reactant materials. Increasing the milling time (to 22 ks) leads to the formation of fresh active surfaces of Mg, which have a high reducing potential and react with the WO3 in a typical oxidation/reduction reaction. At the end of this stage (at 43 ks), the Mg powders are oxidized to MgO, whereas the WO3 is reduced completely to metallic W. During the last stage of milling (86 to 173 ks), a solid-state reaction takes place between W and the unreacted C powders to yield nanocomposite WC/MgO particles. This end-product was consolidated in vacuum at 1963 K with a pressure of 19.6 to 38.2 MPa for 0.3 ks, using a plasma-activated sintering (PAS) method. The sintered sample is fully dense (above 99.5 pct of the theoretical density) and contains nanocrystalline grains of less than 50 nm in diameter. This fine grain structure offers an opportunity for the composite material to combine high values of two opposite properties, i.e., hardness and fracture toughness (Kc), of 15 GPa and 14 MPa√m, respectively. Here, we propose this nanocomposite material for a wide range of industrial applications, including tips for cutting tools and tips for oil drilling equipment.
UR - http://www.scopus.com/inward/record.url?scp=0035083538&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0035083538&partnerID=8YFLogxK
U2 - 10.1007/s11661-001-0111-0
DO - 10.1007/s11661-001-0111-0
M3 - Article
AN - SCOPUS:0035083538
VL - 32
SP - 157
EP - 164
JO - Unknown Journal
JF - Unknown Journal
IS - 1
ER -