Abstract
The iridium oxide (IrO2) catalyst for the oxygen evolution reaction used industrially (in proton exchange membrane water electrolyzers) is scarce and costly. Although ruthenium oxide (RuO2) is a promising alternative, its poor stability has hindered practical application. We used well-defined extended surface models to identify that RuO2 undergoes structure-dependent corrosion that causes Ru dissolution. Tantalum (Ta) doping effectively stabilized RuO2 against such corrosion and enhanced the intrinsic activity of RuO2. In an industrial demonstration, Ta-RuO2 electrocatalyst exhibited stability near that of IrO2 and had a performance decay rate of ~14 microvolts per hour in a 2800-hour test.
Original language | English |
---|---|
Pages (from-to) | 48-55 |
Number of pages | 8 |
Journal | Science |
Volume | 387 |
Issue number | 6729 |
DOIs | |
Publication status | Published - 2025 Jan 3 |