Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3 nanowires inside carbon nanotubes

Paola Ayala, Ryo Kitaura, Ryo Nakanishi, Hidetsugu Shiozawa, Daisuke Ogawa, Patrick Hoffmann, Hinsanori Shinohara, Thomas Pichler

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)

Abstract

Here we report on controlling the effective hybridization and charge transfer of rare-earth elements inside a carbon nanotube (CNT) nanoreactor. The tubular space inside CNTs can encapsulate one-dimensional (1D) crystals such as ErCl3, which we have used as a starting material. Applying a thermochemical reaction in ultrahigh vacuum, we obtain elemental Er nanowires still encapsulated in the CNTs. The hybridization degree and the effective charge changes were directly accessed across the Er 4d and 3d edges by high-energy spectroscopy. It was found that Er is trivalent but the effective valence is reduced for the Er-filled tube, which strongly suggests an increased hybridization between the nanotube π states and the Er 5d orbitals. This was also evidenced by the conduction band response determined in C1s-x-ray absorption spectroscopy (XAS). These results have significant implications for the 1D electronic and magnetic properties of these and similar rare-earth nanowire hybrids.

Original languageEnglish
Article number085407
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume83
Issue number8
DOIs
Publication statusPublished - 2011 Feb 11

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Templating rare-earth hybridization via ultrahigh vacuum annealing of ErCl3 nanowires inside carbon nanotubes'. Together they form a unique fingerprint.

Cite this