Tensile behavior of transient liquid phase bonded ODS ferritic steel joint

Sanghoon Noh, Ryuta Kasada, Akihiko Kimura

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review


The oxide dispersion strengthened (ODS) steel is one of the candidate structural materials for Gen. IV systems and DEMO reactor systems because of its excellent elevated temperature strength, corrosion and radiation resistance. Joining technology development of ODS steels is unavoidable to realize these advanced nuclear systems with huge and complex structures. However, joining of ODS steels with conventional melting-solidification processes is considered to cause detrimental effects on joint regions because of the possible modification of the fine homogeneous microstructure to rather coarse and inhomogeneous microstructure. Therefore, suitable joining techniques need to be developed with such a process that these featured microstructures are reasonably maintained after the processes. In this study, tensile behavior of TLPB ODS steel joint was investigated. Thin pure boron insert material was deposited by electron beam physical vapor deposition (EBPVD) to join ODS steel (Fe-15Cr-2W-0.2Ti-0.35Y2O3) blocks using uni-axial hot press. ODS steel was successfully bonded with free of voids at bonding interface with EBPVD bond. Tensile strength of the joint is similar with the base materials, while total elongation is decreased at 700°C accompanied by fracturing at the joint interface. The fracture is considered to be due to partial discontinuous microstructures aligned along the interface.

Original languageEnglish
Title of host publicationZero-Carbon Energy Kyoto 2010
Subtitle of host publicationProceedings of the Second International Symposium of Global COE Program "Energy Science in the Age of Global Warming-Toward CO2 Zero-emission Energy System"
PublisherSpringer Verlag
Number of pages8
ISBN (Print)9784431539094
Publication statusPublished - 2011

Publication series

NameGreen Energy and Technology
ISSN (Print)1865-3529
ISSN (Electronic)1865-3537


  • Oxide dispersion strengthened steel
  • Pure boron
  • Tensile behavior
  • Transient liquid phase bonding


Dive into the research topics of 'Tensile behavior of transient liquid phase bonded ODS ferritic steel joint'. Together they form a unique fingerprint.

Cite this