The BED finger domain protein MIG-39 halts migration of distal tip cells in Caenorhabditis elegans

Tetsuhiro Kikuchi, Yukimasa Shibata, Hon Song Kim, Yukihiko Kubota, Sawako Yoshina, Shohei Mitani, Kiyoji Nishiwaki

    Research output: Contribution to journalArticlepeer-review

    3 Citations (Scopus)


    Organs are often formed by the extension and branching of epithelial tubes. An appropriate termination of epithelial tube extension is important for generating organs of the proper size and morphology. However, the mechanism by which epithelial tubes terminate their extension is mostly unknown. Here we show that the BED-finger domain protein MIG-39 acts to stop epithelial tube extension in Caenorhabditis elegans. The gonadal leader cells, called distal tip cells (DTCs), migrate in a U-shaped pattern during larval development and stop migrating at the young adult stage, generating a gonad with anterior and posterior U-shaped arms. In mig-39 mutants, however, DTCs overshot their normal stopping position. MIG-39 promoted the deceleration of DTCs, leading to the proper timing and positioning of the cessation of DTC migration. Among three Rac GTPase genes, mutations in ced-10 and rac-2 enhanced the overshoot of anterior DTCs, while they suppressed that of posterior DTCs of mig-39 mutants. On the other hand, the mutation in mig-2 suppressed both the anterior and posterior DTC defects of mig-39. Genetic analyses suggested that MIG-39 acts in parallel with Rac GTPases in stopping DTC migration. We propose a model in which the anterior and posterior DTCs respond in an opposite manner to the levels of Rac activities in the cessation of DTC migration.

    Original languageEnglish
    Pages (from-to)151-161
    Number of pages11
    JournalDevelopmental Biology
    Issue number2
    Publication statusPublished - 2015 Jan 15


    • BED-finger domain
    • Cell migration
    • Epithelial tube morphogenesis
    • Rac GTPase

    ASJC Scopus subject areas

    • Molecular Biology
    • Developmental Biology
    • Cell Biology


    Dive into the research topics of 'The BED finger domain protein MIG-39 halts migration of distal tip cells in Caenorhabditis elegans'. Together they form a unique fingerprint.

    Cite this