TY - JOUR
T1 - The chemical structure of the Hawaiian mantle plume
AU - Ren, Zhong Yuan
AU - Ingle, Stephanie
AU - Takahashi, Eiichi
AU - Hirano, Naoto
AU - Hirata, Takafumi
N1 - Funding Information:
Acknowledgements We thank F. A. Frey for comments and suggestions, and M. F. Coffin, L. Danyushevsky, A. W. Hofmann, J. Lassiter, D. A. Clague, S. Escrig, D. Weis and K. Putirka for discussions, comments and technical advice. C. Herzberg, J. M. Rhodes and M. Kurz provided constructive criticism that led to improvements in the manuscript. Z.-Y.R., S.I. and N.H. are grateful to the JSPS programme for funding.
PY - 2005/8/11
Y1 - 2005/8/11
N2 - The Hawaiian-Emperor volcanic island and seamount chain is usually attributed to a hot mantle plume, located beneath the Pacific lithosphere, that delivers material sourced from deep in the mantle to the surface. The shield volcanoes of the Hawaiian islands are distributed in two curvilinear, parallel trends (termed 'Kea' and 'Loa'), whose rocks are characterized by general geochemical differences. This has led to the proposition that Hawaiian volcanoes sample compositionally distinct, concentrically zoned, regions of the underlying mantle plume. Melt inclusions, or samples of local magma 'frozen' in olivine phenocrysts during crystallization, may record complexities of mantle sources, thereby providing better insight into the chemical structure of plumes. Here we report the discovery of both Kea- and Loa-like major and trace element compositions in olivine-hosted melt inclusions in individual, shield-stage Hawaiian volcanoes-even within single rock samples. We infer from these data that one mantle source component may dominate a single lava flow, but that the two mantle source components are consistently represented to some extent in all lavas, regardless of the specific geographic location of the volcano. We therefore suggest that the Hawaiian mantle plume is unlikely to be compositionally concentrically zoned. Instead, the observed chemical variation is probably controlled by the thermal structure of the plume.
AB - The Hawaiian-Emperor volcanic island and seamount chain is usually attributed to a hot mantle plume, located beneath the Pacific lithosphere, that delivers material sourced from deep in the mantle to the surface. The shield volcanoes of the Hawaiian islands are distributed in two curvilinear, parallel trends (termed 'Kea' and 'Loa'), whose rocks are characterized by general geochemical differences. This has led to the proposition that Hawaiian volcanoes sample compositionally distinct, concentrically zoned, regions of the underlying mantle plume. Melt inclusions, or samples of local magma 'frozen' in olivine phenocrysts during crystallization, may record complexities of mantle sources, thereby providing better insight into the chemical structure of plumes. Here we report the discovery of both Kea- and Loa-like major and trace element compositions in olivine-hosted melt inclusions in individual, shield-stage Hawaiian volcanoes-even within single rock samples. We infer from these data that one mantle source component may dominate a single lava flow, but that the two mantle source components are consistently represented to some extent in all lavas, regardless of the specific geographic location of the volcano. We therefore suggest that the Hawaiian mantle plume is unlikely to be compositionally concentrically zoned. Instead, the observed chemical variation is probably controlled by the thermal structure of the plume.
UR - http://www.scopus.com/inward/record.url?scp=23844542458&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=23844542458&partnerID=8YFLogxK
U2 - 10.1038/nature03907
DO - 10.1038/nature03907
M3 - Article
AN - SCOPUS:23844542458
SN - 0028-0836
VL - 436
SP - 837
EP - 840
JO - Nature
JF - Nature
IS - 7052
ER -