TY - JOUR
T1 - The combination of maternal and offspring high-fat diets causes marked oxidative stress and development of metabolic syndrome in mouse offspring
AU - Ito, Junya
AU - Nakagawa, Kiyotaka
AU - Kato, Shunji
AU - Miyazawa, Taiki
AU - Kimura, Fumiko
AU - Miyazawa, Teruo
N1 - Publisher Copyright:
© 2016 Elsevier Inc. All rights reserved.
PY - 2016/4/15
Y1 - 2016/4/15
N2 - Maternal overnutrition (e.g., high-fat (HF) diet) during pregnancy and lactation is believed to cause oxidative stress and increase the risk of metabolic syndrome in offspring. In the present study, we investigated the effects of both maternal and offspring HF diets on metabolic syndrome risk and oxidative stress profiles in mice. Dams of the C57BL/6J mouse strain were fed a HF or control (CO) diet during gestation and lactation. Offspring were weaned at 3 weeks of age. The female offspring were sacrificed at weaning, while the males were maintained on the HF or CO diet until 11 weeks of age. Tissue samples, including those from liver, were collected from offspring at 3 and 11 weeks of age, and lipids, phosphatidylcholine hydroperoxide (PCOOH, an oxidative stress marker), and gene expression were evaluated. Accumulation of lipids, but not PCOOH, was found in the livers of 3-week-old offspring from dams fed the HF diet. When the offspring were maintained on a HF diet until 11 weeks of age, marked accumulation of both liver lipids and PCOOH was observed. PCOOH manifestation was supported by the expression of genes such as Gpx4, encoding a PCOOH degrading enzyme. These results suggest that the combination of maternal and offspring overnutrition causes marked oxidative stress in offspring, which accelerates metabolic syndrome. The present findings in offspring from infancy to adulthood may be useful for better understanding the cause-and-effect relationships between oxidative stress and metabolic syndrome development.
AB - Maternal overnutrition (e.g., high-fat (HF) diet) during pregnancy and lactation is believed to cause oxidative stress and increase the risk of metabolic syndrome in offspring. In the present study, we investigated the effects of both maternal and offspring HF diets on metabolic syndrome risk and oxidative stress profiles in mice. Dams of the C57BL/6J mouse strain were fed a HF or control (CO) diet during gestation and lactation. Offspring were weaned at 3 weeks of age. The female offspring were sacrificed at weaning, while the males were maintained on the HF or CO diet until 11 weeks of age. Tissue samples, including those from liver, were collected from offspring at 3 and 11 weeks of age, and lipids, phosphatidylcholine hydroperoxide (PCOOH, an oxidative stress marker), and gene expression were evaluated. Accumulation of lipids, but not PCOOH, was found in the livers of 3-week-old offspring from dams fed the HF diet. When the offspring were maintained on a HF diet until 11 weeks of age, marked accumulation of both liver lipids and PCOOH was observed. PCOOH manifestation was supported by the expression of genes such as Gpx4, encoding a PCOOH degrading enzyme. These results suggest that the combination of maternal and offspring overnutrition causes marked oxidative stress in offspring, which accelerates metabolic syndrome. The present findings in offspring from infancy to adulthood may be useful for better understanding the cause-and-effect relationships between oxidative stress and metabolic syndrome development.
KW - Fetal programming model
KW - Gpx4
KW - Metabolic syndrome
KW - Oxidative stress
KW - PCOOH
UR - http://www.scopus.com/inward/record.url?scp=84960363470&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84960363470&partnerID=8YFLogxK
U2 - 10.1016/j.lfs.2016.02.089
DO - 10.1016/j.lfs.2016.02.089
M3 - Article
C2 - 26924496
AN - SCOPUS:84960363470
SN - 0024-3205
VL - 151
SP - 70
EP - 75
JO - Life Sciences
JF - Life Sciences
ER -