Abstract
Aluminum-ion batteries are currently regarded as the most promising energy storage batteries. The recent development of aluminum-ion batteries has been greatly promoted based on the use of graphitic carbon materials as a positive electrode. However, it remains unclear whether all carbonaceous materials can achieve excellent electrochemical behaviour similar to graphite. In this study, the correlation between the graphitization degree and capacity of a graphite electrode is systematically investigated for aluminum-ion batteries. The results show that the higher the graphitization degree, the larger the charge/discharge capacity and the better the cycling stability. Moreover, graphite nanoflakes with the highest graphitization degree deliver an initial discharge capacity of 66.5 mA h g-1 at a current density of 100 mA g-1, eventually retaining 66.3 mA h g-1 after 100 cycles with a coulombic efficiency of 96.1% and capacity retention of 99.7%, exhibiting an ultra-stable cycling performance. More importantly, it can be concluded that the discharge capacity of different kinds of graphite materials can be predicted by determining the graphitization degree.
Original language | English |
---|---|
Pages (from-to) | 38990-38997 |
Number of pages | 8 |
Journal | RSC Advances |
Volume | 9 |
Issue number | 67 |
DOIs | |
Publication status | Published - 2019 |
ASJC Scopus subject areas
- Chemistry(all)
- Chemical Engineering(all)