TY - JOUR
T1 - The effects of heme modification on reactivity, ligand binding properties and iron-coordination structures of cytochrome P450nor
AU - Singh, Udai P.
AU - Obayashi, Eiji
AU - Takahashi, Satoshi
AU - Iizuka, Tetsutaro
AU - Shoun, Hirofumi
AU - Shiro, Yoshitsugu
PY - 1998/4/23
Y1 - 1998/4/23
N2 - Artificial cytochrome P350nors (nitric oxide reductase) were prepared by replacing the native protoheme with various 4-substituted hemes: meso-, deutero-, and diacetyldeutero-hemes. For these samples, the ratio of low spin/high spin states of the ferric resting enzyme were varied, indicating that the coordination of the water molecule at the iron sixth site was affected by the electron withdrawing capacities of the heme 2,4-substituents. The binding of the water molecule reduces the rate of binding of nitric oxide (NO) to the ferric iron. In addition, the reduction reaction of the ferric-NO complex with NADH, which constitutes the second step in the NO reduction, was facilitated by the electron withdrawing capacity of 2,4-substituents. Consequently, proto- (native-) P450nor exhibited the highest overall enzymatic activity (NO reduction activity), while the enzymes containing diacetyl-, deutero-, and meso-hemes had considerably lower activities, since the NO reduction activity is determined by a balance of the reaction rates of the above two steps. The optical absorption spectra of the ferric-NO and the ferrous-CO complexes of the reconstituted enzymes show that the electron density on the heme in both states was modulated by the substituent groups. However, the resonance Raman spectral measurements showed that the Fc-NO and N-O stretching frequencies in the ferric-NO complex were insensitive to the electron density of the heme while the Fc-CO and C-O stretching frequencies in the ferrous-CO complex were sensitively varied by the electron withdrawing capacity of the 2,4-substituent. The differences are discussed in terms of the difference in the iron-ligand bond characters between the ferric-NO and the ferrous-CO complexes.
AB - Artificial cytochrome P350nors (nitric oxide reductase) were prepared by replacing the native protoheme with various 4-substituted hemes: meso-, deutero-, and diacetyldeutero-hemes. For these samples, the ratio of low spin/high spin states of the ferric resting enzyme were varied, indicating that the coordination of the water molecule at the iron sixth site was affected by the electron withdrawing capacities of the heme 2,4-substituents. The binding of the water molecule reduces the rate of binding of nitric oxide (NO) to the ferric iron. In addition, the reduction reaction of the ferric-NO complex with NADH, which constitutes the second step in the NO reduction, was facilitated by the electron withdrawing capacity of 2,4-substituents. Consequently, proto- (native-) P450nor exhibited the highest overall enzymatic activity (NO reduction activity), while the enzymes containing diacetyl-, deutero-, and meso-hemes had considerably lower activities, since the NO reduction activity is determined by a balance of the reaction rates of the above two steps. The optical absorption spectra of the ferric-NO and the ferrous-CO complexes of the reconstituted enzymes show that the electron density on the heme in both states was modulated by the substituent groups. However, the resonance Raman spectral measurements showed that the Fc-NO and N-O stretching frequencies in the ferric-NO complex were insensitive to the electron density of the heme while the Fc-CO and C-O stretching frequencies in the ferrous-CO complex were sensitively varied by the electron withdrawing capacity of the 2,4-substituent. The differences are discussed in terms of the difference in the iron-ligand bond characters between the ferric-NO and the ferrous-CO complexes.
KW - Cytochrome P450
KW - Heme modification
KW - NO reduction
UR - http://www.scopus.com/inward/record.url?scp=0000957449&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0000957449&partnerID=8YFLogxK
U2 - 10.1016/S0167-4838(98)00006-5
DO - 10.1016/S0167-4838(98)00006-5
M3 - Article
C2 - 9602081
AN - SCOPUS:0000957449
SN - 0167-4838
VL - 1384
SP - 103
EP - 111
JO - Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology
JF - Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology
IS - 1
ER -