TY - JOUR
T1 - The effects of syndecan on osteoblastic cell adhesion onto nano-zirconia surface
AU - Sun, Lu
AU - Hong, Guang
AU - Matsui, Hiroyuki
AU - Song, Yun Jia
AU - Sasaki, Keiichi
N1 - Funding Information:
Part of this research was supported by a Grant-in-Aid (No 19K10199) for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Publisher Copyright:
© 2020 Sun et al.
PY - 2020
Y1 - 2020
N2 - Purpose: Zirconia is one of the most promising implant materials due to its favorable physical, mechanical and biological properties. However, until now, we know little about the mechanism of osseointegration on zirconia. The purpose of this study is to evaluate the effect of Syndecan (Sdc) on osteoblastic cell (MC3T3-E1) adhesion and proliferation onto zirconia materials. Materials and Methods: The mirror-polished disks 15 mm in diameter and 1.5 mm in thick of commercial pure titanium (CpTi), 3mol% yttria-stabilized tetragonal zirconia polycrystalline (3Y-TZP) and nano-zirconia (NanoZr) are used in this study. MC3T3-E1 cells were seeded onto specimen surfaces and subjected to RNA interference (RNAi) for Syndecan-1, Syndecan-2, Syndecan-3, and Syndecan-4. At 48h post-transfection, the cell morphology, actin cytoskeleton, and focal adhesion were observed using scanning electron microscopy or laser scanning confocal fluorescence microscopy. At 24h and 48h posttransfection, cell counting kit-8 (CCK-8) assay was used to investigate cell proliferation. Results: The cell morphology of MC3T3-E1 cells on CpTi, 3Y-TZP, and NanoZr changed into abnormal shape after gene silencing of Syndecan. Among the Syndecan family, Sdc-2 is responsible for NanoZr-specific morphology regulation, via maintenance of cytoskeletal conformation without affecting cellular attachment. According to CCK-8 assay, Sdc-2 affects the osteoblastic cell proliferation onto NanoZr. Conclusion: Within the limitation of this study, we suggest that Syndecan affects osteoblastic cell adhesion on CpTi, 3Y-TZP, and NanoZr. Sdc-2 might be an important heparin-sensitive cell membrane regulator in osteoblastic cell adhesion, specifically on NanoZr, through the organization of actin cytoskeleton and affects osteoblastic cell proliferation.
AB - Purpose: Zirconia is one of the most promising implant materials due to its favorable physical, mechanical and biological properties. However, until now, we know little about the mechanism of osseointegration on zirconia. The purpose of this study is to evaluate the effect of Syndecan (Sdc) on osteoblastic cell (MC3T3-E1) adhesion and proliferation onto zirconia materials. Materials and Methods: The mirror-polished disks 15 mm in diameter and 1.5 mm in thick of commercial pure titanium (CpTi), 3mol% yttria-stabilized tetragonal zirconia polycrystalline (3Y-TZP) and nano-zirconia (NanoZr) are used in this study. MC3T3-E1 cells were seeded onto specimen surfaces and subjected to RNA interference (RNAi) for Syndecan-1, Syndecan-2, Syndecan-3, and Syndecan-4. At 48h post-transfection, the cell morphology, actin cytoskeleton, and focal adhesion were observed using scanning electron microscopy or laser scanning confocal fluorescence microscopy. At 24h and 48h posttransfection, cell counting kit-8 (CCK-8) assay was used to investigate cell proliferation. Results: The cell morphology of MC3T3-E1 cells on CpTi, 3Y-TZP, and NanoZr changed into abnormal shape after gene silencing of Syndecan. Among the Syndecan family, Sdc-2 is responsible for NanoZr-specific morphology regulation, via maintenance of cytoskeletal conformation without affecting cellular attachment. According to CCK-8 assay, Sdc-2 affects the osteoblastic cell proliferation onto NanoZr. Conclusion: Within the limitation of this study, we suggest that Syndecan affects osteoblastic cell adhesion on CpTi, 3Y-TZP, and NanoZr. Sdc-2 might be an important heparin-sensitive cell membrane regulator in osteoblastic cell adhesion, specifically on NanoZr, through the organization of actin cytoskeleton and affects osteoblastic cell proliferation.
KW - Cell adhesion
KW - Osteoblastic cell
KW - Syndecan
KW - Zirconia
UR - http://www.scopus.com/inward/record.url?scp=85087945817&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087945817&partnerID=8YFLogxK
U2 - 10.2147/IJN.S263053
DO - 10.2147/IJN.S263053
M3 - Article
C2 - 32764936
AN - SCOPUS:85087945817
SN - 1176-9114
VL - 15
SP - 5061
EP - 5072
JO - International Journal of Nanomedicine
JF - International Journal of Nanomedicine
ER -