The evaluation of in-service materials degradation of low-alloy steels by the electrochemical method

Yutaka Watanabe, Tetsuo Shoji

Research output: Contribution to journalArticlepeer-review

29 Citations (Scopus)


The nondestructive evaluation procedure for detecting in-service materials degradation of low-alloy 2.25Cr-1Mo and CrMoV steels by the electrochemical method has been investigated. The results can be summarized as follows. (1) For 2.25Cr-1Mo steels, the peak current mainly caused by the selective dissolution of coarse carbides M6C appears at ∼+100 mV during potentiodynamic polarization measurements in dilute sodium molybdate solution. This peak value of current density, ΔIp, can be chosen as a reflective parameter of an amount of coarse carbides M6C and shows excellent correlations both with shifts in fracture appearance transition temperature (FATT) caused by carbide coarsening and with hardness change. Actual operational temperature can be estimated from operational period, since the Larson-Miller time-temperature parameter (LMP) value of materials has a unique relationship with ΔIp values. (2) For CrMoV steels, the evaluation of temper embrittlement of CrMoV cast steel by a novel electrochemical technique is described. Intergranular corrosion (IGC) occurs only on temper-embrittled samples during anodic polarization process in calcium nitrate solution. The characteristic changes in polarization curves attributed to IGC have an excellent correlation with shifts in FATT caused by temper embrittlement.

Original languageEnglish
Pages (from-to)2097-2106
Number of pages10
JournalMetallurgical Transactions A
Issue number9
Publication statusPublished - 1991 Sept

ASJC Scopus subject areas

  • Engineering(all)


Dive into the research topics of 'The evaluation of in-service materials degradation of low-alloy steels by the electrochemical method'. Together they form a unique fingerprint.

Cite this