TY - JOUR
T1 - The Gata1 5′ region harbors distinct cis-regulatory modules that direct gene activation in erythroid cells and gene inactivation in HSCs
AU - Takai, Jun
AU - Moriguchi, Takashi
AU - Suzuki, Mikiko
AU - Yu, Lei
AU - Ohneda, Kinuko
AU - Yamamoto, Masayuki
N1 - Publisher Copyright:
© 2013 by The American Society of Hematology.
PY - 2013
Y1 - 2013
N2 - GATA1 is a master regulator of hematopoietic differentiation, but Gata1 expression is inactivated in hematopoietic stem cells (HSCs). Using a bacterial artificial chromosome containing the Gata1 gene modified with green fluorescent protein (GFP) reporter, we explored the function of the 3.7-kb Gata1 upstream region (GdC region) that harbors 3 core cis-elements: Gata1 hematopoietic enhancer, double GATA-motif, and CACCC-motif. Transgenic GFP expression directed by the Gata1-BAC faithfully recapitulated the endogenous Gata1 expression pattern. However, deletion of the GdC-region eliminated reporter expression in all hematopoietic cells. To test whether the combination of the core cis-elements represents the regulatory function of the GdC-region, we replaced the region with a 659-bp minigene that linked the three cis-elements (MG-GFP). The GFP reporter expression directed by the MG-GFP BAC fully recapitulated the erythroid-megakaryocytic Gata1 expression. However, the GFP expression was aberrantly increased in the HSCs and was associated with decreases in DNA methylation and abundant GATA2 binding to the transgenic MG-GFP allele. The 3.2-kb sequences interspaced between the Gata1 hematopoietic enhancer and the double GATA-motif were able to recruit DNA methyltransferase 1, thereby exerting a cis-repressive function in the HSC-like cell line. These results indicate that the 3.2-kb interspacing sequences inactivate Gata1 by maintaining DNA-methylation in the HSCs.
AB - GATA1 is a master regulator of hematopoietic differentiation, but Gata1 expression is inactivated in hematopoietic stem cells (HSCs). Using a bacterial artificial chromosome containing the Gata1 gene modified with green fluorescent protein (GFP) reporter, we explored the function of the 3.7-kb Gata1 upstream region (GdC region) that harbors 3 core cis-elements: Gata1 hematopoietic enhancer, double GATA-motif, and CACCC-motif. Transgenic GFP expression directed by the Gata1-BAC faithfully recapitulated the endogenous Gata1 expression pattern. However, deletion of the GdC-region eliminated reporter expression in all hematopoietic cells. To test whether the combination of the core cis-elements represents the regulatory function of the GdC-region, we replaced the region with a 659-bp minigene that linked the three cis-elements (MG-GFP). The GFP reporter expression directed by the MG-GFP BAC fully recapitulated the erythroid-megakaryocytic Gata1 expression. However, the GFP expression was aberrantly increased in the HSCs and was associated with decreases in DNA methylation and abundant GATA2 binding to the transgenic MG-GFP allele. The 3.2-kb sequences interspaced between the Gata1 hematopoietic enhancer and the double GATA-motif were able to recruit DNA methyltransferase 1, thereby exerting a cis-repressive function in the HSC-like cell line. These results indicate that the 3.2-kb interspacing sequences inactivate Gata1 by maintaining DNA-methylation in the HSCs.
UR - http://www.scopus.com/inward/record.url?scp=84888218999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84888218999&partnerID=8YFLogxK
U2 - 10.1182/blood-2013-01-476911
DO - 10.1182/blood-2013-01-476911
M3 - Article
C2 - 24021675
AN - SCOPUS:84888218999
SN - 0006-4971
VL - 122
SP - 3450
EP - 3460
JO - Blood
JF - Blood
IS - 20
ER -