The habu genome reveals accelerated evolution of venom protein genes

Hiroki Shibata, Takahito Chijiwa, Naoko Oda-Ueda, Hitomi Nakamura, Kazuaki Yamaguchi, Shousaku Hattori, Kazumi Matsubara, Yoichi Matsuda, Akifumi Yamashita, Akiko Isomoto, Kazuki Mori, Kosuke Tashiro, Satoru Kuhara, Shinichi Yamasaki, Manabu Fujie, Hiroki Goto, Ryo Koyanagi, Takeshi Takeuchi, Yasuyuki Fukumaki, Motonori OhnoEiichi Shoguchi, Kanako Hisata, Noriyuki Satoh, Tomohisa Ogawa

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)


Evolution of novel traits is a challenging subject in biological research. Several snake lineages developed elaborate venom systems to deliver complex protein mixtures for prey capture. To understand mechanisms involved in snake venom evolution, we decoded here the ~1.4-Gb genome of a habu, Protobothrops flavoviridis. We identified 60 snake venom protein genes (SV) and 224 non-venom paralogs (NV), belonging to 18 gene families. Molecular phylogeny reveals early divergence of SV and NV genes, suggesting that one of the four copies generated through two rounds of whole-genome duplication was modified for use as a toxin. Among them, both SV and NV genes in four major components were extensively duplicated after their diversification, but accelerated evolution is evident exclusively in the SV genes. Both venom-related SV and NV genes are significantly enriched in microchromosomes. The present study thus provides a genetic background for evolution of snake venom composition.

Original languageEnglish
Article number11300
JournalScientific Reports
Issue number1
Publication statusPublished - 2018 Dec 1


Dive into the research topics of 'The habu genome reveals accelerated evolution of venom protein genes'. Together they form a unique fingerprint.

Cite this