TY - JOUR
T1 - The investigation of the T-type calcium channel enhancer SAK3 in an animal model of TAF1 intellectual disability syndrome
AU - Janakiraman, Udaiyappan
AU - Dhanalakshmi, Chinnasamy
AU - Yu, Jie
AU - Moutal, Aubin
AU - Boinon, Lisa
AU - Fukunaga, Kohji
AU - Khanna, Rajesh
AU - Nelson, Mark A.
N1 - Funding Information:
We acknowledge the funding and support of the Senner Endowment for Precision Health, University of Arizona Health Sciences . This work was also supported by grants from the National Natural Science Foundation of China ( 81603088 ) to J.Y., and R01DA042852 from the National Institute on Drug Abuse to R.K.
Publisher Copyright:
© 2020 The Authors
PY - 2020/9
Y1 - 2020/9
N2 - T-type calcium channels, in the central nervous system, are involved in the pathogenesis of many neurodegenerative diseases, including TAF1 intellectual disability syndrome (TAF1 ID syndrome). Here, we evaluated the efficacy of a novel T-type Ca2+ channel enhancer, SAK3 (ethyl 8′-methyl-2′, 4-dioxo-2-(piperidin-1-yl)-2′H-spiro [cyclopentane-1, 3′-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate) in an animal model of TAF1 ID syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21 animals were given SAK3 (0.25 mg/kg, p.o.) or vehicle up to post-natal day 35 (i.e. 14 days). Rats were subjected to behavioral, morphological, electrophysiological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued the behavior abnormalities in beam walking test and open field test caused by TAF1 gene editing. We observed an increase in calbindin-positive Purkinje cells and GFAP-positive astrocytes as well as a decrease in IBA1-positive microglia cells in SAK3-treated animals. In addition, SAK3 protected the Purkinje and granule cells from apoptosis induced by TAF-1 gene editing. SAK3 also restored the excitatory post synaptic current (sEPSCs) in TAF1 edited Purkinje cells. Finally, SAK3 normalized the BDNF/AKT signaling axis in TAF1 edited animals. Altogether, these observations suggest that SAK3 could be a novel therapeutic agent for TAF1 ID syndrome.
AB - T-type calcium channels, in the central nervous system, are involved in the pathogenesis of many neurodegenerative diseases, including TAF1 intellectual disability syndrome (TAF1 ID syndrome). Here, we evaluated the efficacy of a novel T-type Ca2+ channel enhancer, SAK3 (ethyl 8′-methyl-2′, 4-dioxo-2-(piperidin-1-yl)-2′H-spiro [cyclopentane-1, 3′-imidazo [1, 2-a] pyridine]-2-ene-3-carboxylate) in an animal model of TAF1 ID syndrome. At post-natal day 3, rat pups were subjected to intracerebroventricular (ICV) injection of either gRNA-control or gRNA-TAF1 CRISPR/Cas9 viruses. At post-natal day 21 animals were given SAK3 (0.25 mg/kg, p.o.) or vehicle up to post-natal day 35 (i.e. 14 days). Rats were subjected to behavioral, morphological, electrophysiological, and molecular studies. Oral administration of SAK3 (0.25 mg/kg, p.o.) significantly rescued the behavior abnormalities in beam walking test and open field test caused by TAF1 gene editing. We observed an increase in calbindin-positive Purkinje cells and GFAP-positive astrocytes as well as a decrease in IBA1-positive microglia cells in SAK3-treated animals. In addition, SAK3 protected the Purkinje and granule cells from apoptosis induced by TAF-1 gene editing. SAK3 also restored the excitatory post synaptic current (sEPSCs) in TAF1 edited Purkinje cells. Finally, SAK3 normalized the BDNF/AKT signaling axis in TAF1 edited animals. Altogether, these observations suggest that SAK3 could be a novel therapeutic agent for TAF1 ID syndrome.
KW - Cav3.1
KW - Cerebellum
KW - Intellectual disability syndrome
KW - SAK3
KW - TAF1
UR - http://www.scopus.com/inward/record.url?scp=85087365907&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85087365907&partnerID=8YFLogxK
U2 - 10.1016/j.nbd.2020.105006
DO - 10.1016/j.nbd.2020.105006
M3 - Article
C2 - 32622085
AN - SCOPUS:85087365907
SN - 0969-9961
VL - 143
JO - Neurobiology of Disease
JF - Neurobiology of Disease
M1 - 105006
ER -