The primary structural photoresponse of phytochrome proteins captured by a femtosecond x-ray laser

Elin Claesson, Weixiao Yuan Wahlgren, Heikki Takala, Suraj Pandey, Leticia Castillon, Valentyna Kuznetsova, Léocadie Henry, Matthijs Panman, Melissa Carrillo, Joachim Kübel, Rahul Nanekar, Linnéa Isaksson, Amke Nimmrich, Andrea Cellini, Dmitry Morozov, Michał Maj, Moona Kurttila, Robert Bosman, Eriko Nango, Rie TanakaTomoyuki Tanaka, Luo Fangjia, So Iwata, Shigeki Owada, Keith Moffat, Gerrit Groenhof, Emina A. Stojković, Janne A. Ihalainen, Marius Schmidt, Sebastian Westenhoff

Research output: Contribution to journalArticlepeer-review

60 Citations (Scopus)

Abstract

Phytochrome proteins control the growth, reproduction, and photosynthesis of plants, fungi, and bacteria. Light is detected by a bilin cofactor, but it remains elusive how this leads to activation of the protein through structural changes. We present serial femtosecond X-ray crystallographic data of the chromophore-binding domains of a bacterial phytochrome at delay times of 1 ps and 10 ps after photoexcitation. The data reveal a twist of the D-ring, which leads to partial detachment of the chromophore from the protein. Un-expectedly, the conserved so-called pyrrole water is photodissociated from the chromophore, concomitant with movement of the A-ring and a key signalling aspartate. The changes are wired together by ultrafast backbone and water movements around the chromophore, channeling them into signal trans-duction towards the output domains. We suggest that the observed collective changes are important for the phytochrome photoresponse, explaining the earliest steps of how plants, fungi and bacteria sense red light.

Original languageEnglish
JournaleLife
Volume9
DOIs
Publication statusPublished - 2020 Mar

Fingerprint

Dive into the research topics of 'The primary structural photoresponse of phytochrome proteins captured by a femtosecond x-ray laser'. Together they form a unique fingerprint.

Cite this