The thermodynamic properties and molecular dynamics of [Li+@C60](PF6-) associated with structural phase transitions

Hal Suzuki, Misaki Ishida, Chiko Otani, Kazuhiko Kawachi, Yasuhiko Kasama, Eunsang Kwon, Yuji Miyazaki, Motohiro Nakano

Research output: Contribution to journalArticlepeer-review

6 Citations (Scopus)


Calorimetric and terahertz-far-infrared (THz-FIR) spectroscopic and infrared (IR) spectroscopic measurements were conducted for [Li+@C60](PF6-) at temperatures between 1.8 and 395 K. [Li+@C60](PF6-) underwent a structural phase transition at around 360 K accompanied by the orientational order-disorder transition of Li+@C60 and PF6-. The transition occurred in a step-wise manner. The total transition entropy (ΔtrsS) of 40.1 ± 0.4 J K-1 mol-1 was smaller than that of the orientational order-disorder transition in a pristine C60 crystal (ΔtrsS = 45.4 ± 0.5 J K-1 mol-1). Thus, the orientational disorder of Li+@C60 in the high-temperature phase of [Li+@C60](PF6-) was much less excited than that of the pristine C60 owing to the Coulombic interactions, which stabilized the ionic crystal lattice of [Li+@C60](PF6-). At T < 100 K, upon cooling, Li+ ions were trapped in two pockets on the inner surface of C60, and no phase transition was observed. Finally, the Li+ ions achieved a complete order at 24 K through antiferroelectric transition. The ΔtrsS value of 4.6 ± 0.4 J K-1 mol-1 was slightly smaller than Rln2 = 5.76 J K-1 mol-1 expected for the two-site order-disorder transition. The extent of the Li+ motion in the C60 cage was related to the selection rule in the THz-FIR and IR spectroscopy of the C60 internal vibrations, because a C60 cage should be polarized by the Li+ ion. It is shown that the local symmetry of the caged molecule can be modified by the rotational or hopping motion of the encaged ions.

Original languageEnglish
Pages (from-to)16147-16153
Number of pages7
JournalPhysical Chemistry Chemical Physics
Issue number29
Publication statusPublished - 2019


Dive into the research topics of 'The thermodynamic properties and molecular dynamics of [Li+@C60](PF6-) associated with structural phase transitions'. Together they form a unique fingerprint.

Cite this