The use of potential drop measurements to predict the temperature distribution in a thin wire with current flowing through it

Hironori Tohmyoh, Kyohei Hiwatashi

Research output: Contribution to journalArticlepeer-review

Abstract

When a current is supplied to a thin wire having smaller heat capacity, the temperature of the wire easily increases due to the principle of Joule heating. The temperature distribution in the wire has constituted an important issue for thin wire application. This paper reports a method to predict the temperature distribution in a thin wire through which current is flowing. The potential drops at the surfaces of thin Cu wires with diameters of 25 µm and 100 µm were measured. For these measurements the points of contact were close together, enabling us to measure the temperature dependency of the electrical resistivity of the wire. On the other hand, potential drop measured between the points of contact much further apart provided the information on the temperature distribution in the wire. By assuming the symmetric and parabolic temperature distribution, the temperature distributions in the Cu wires of 25 µm and 100 µm thick were predicted using the potential drop measurements made with the points of contact much further apart. The temperature distributions predicted were in good agreement with those measured by infrared thermography. The validity of the proposed method was also verified by conducting a similar experiment on Fe wire having a diameter of 100 µm.

Original languageEnglish
Pages (from-to)639-648
Number of pages10
JournalMicrosystem Technologies
Volume27
Issue number3
DOIs
Publication statusPublished - 2021 Mar

Fingerprint

Dive into the research topics of 'The use of potential drop measurements to predict the temperature distribution in a thin wire with current flowing through it'. Together they form a unique fingerprint.

Cite this