TY - JOUR
T1 - Theoretical analysis of SAW propagation characteristics under the strained medium and applications for high temperature stable high coupling SAW substrates
AU - Yamanouchi, K.
AU - Kotani, K.
AU - Odagawa, H.
AU - Cho, Y.
PY - 1999
Y1 - 1999
N2 - The important properties required for SAW substrates are a large electromechanical coupling coefficient (k2), small temperature coefficient of frequency (TCF), low propagation loss, etc. At present, there is no single crystal which satisfies all the above mentioned requirements. Recently the efforts to develop new SAW substrate with large k2 and small TCF have investigated. New KNbO3 single crystal substrates with extremely large electromechanical coupling coefficient (k2 = 53%) and zero TCF around room temperature are developed. LiNbO3 has good properties as the SAW substrates with a large size. Unfortunately LiNbO3 possesses the defect of large values of TCF. In this paper, SAW bonded composite substrates with a large k2, small TCF, low propagation loss and no dispersion using conventional bonders are investigated theoretically and experimentally. The propagation characteristics of SAW in the strained piezoelectric crystal using the higher-order elasticity theory have been analyzed. The theoretical results show zero TCF on LiNbO3/SiO2 substrates. At room temperature a relatively thin LiNbO3 is firmly bonded to a glass material with a small thermal expansion coefficient by using ultra-violet rays stiffen bonder. The experimental results of LiNbO3/glass substrate showed TCF of -19ppm/°C. The propagation properties were almost the same as those of the single crystal.
AB - The important properties required for SAW substrates are a large electromechanical coupling coefficient (k2), small temperature coefficient of frequency (TCF), low propagation loss, etc. At present, there is no single crystal which satisfies all the above mentioned requirements. Recently the efforts to develop new SAW substrate with large k2 and small TCF have investigated. New KNbO3 single crystal substrates with extremely large electromechanical coupling coefficient (k2 = 53%) and zero TCF around room temperature are developed. LiNbO3 has good properties as the SAW substrates with a large size. Unfortunately LiNbO3 possesses the defect of large values of TCF. In this paper, SAW bonded composite substrates with a large k2, small TCF, low propagation loss and no dispersion using conventional bonders are investigated theoretically and experimentally. The propagation characteristics of SAW in the strained piezoelectric crystal using the higher-order elasticity theory have been analyzed. The theoretical results show zero TCF on LiNbO3/SiO2 substrates. At room temperature a relatively thin LiNbO3 is firmly bonded to a glass material with a small thermal expansion coefficient by using ultra-violet rays stiffen bonder. The experimental results of LiNbO3/glass substrate showed TCF of -19ppm/°C. The propagation properties were almost the same as those of the single crystal.
UR - http://www.scopus.com/inward/record.url?scp=0033293702&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0033293702&partnerID=8YFLogxK
U2 - 10.1109/ultsym.1999.849394
DO - 10.1109/ultsym.1999.849394
M3 - Conference article
AN - SCOPUS:0033293702
SN - 1051-0117
VL - 1
SP - 239
EP - 242
JO - Proceedings - IEEE Ultrasonics Symposium
JF - Proceedings - IEEE Ultrasonics Symposium
T2 - 1999 IEEE Ultrasonics Symposium
Y2 - 17 October 1999 through 20 October 1999
ER -