Theoretical calculations of hydrogen adsorption by SnO2 (110) surface: Effect of doping and calcination

Talgat M. Inerbaev, Yoshiyuki Kawazoe, Sudipta Seal

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

A pseudopotential plane-wave based density functional theory simulations of the hydrogen adsorption on rutile SnO2 (110) surface is reported. It is found that on doping with trivalent indium, the surface becomes unstable due to the formation of bridging oxygen vacancies. At sufficiently low doping level, the surface stabilizes at an oxygen vacancy to indium ratio of 1:2. Our calculations predict that at a higher doping level of 9 at.% this ratio becomes larger, and point out a way to synthesize p -type conducting SnO2 thin films. The binding energy of SnO2 (110) surface with adsorbed hydrogen atoms display a maximum at 3-6 at. % of indium doping. This is in good agreement with the experimental results obtained from the SnO2-based hydrogen sensor's sensitivity measurements given by Drake [J. Appl. Phys. 101, 104307 (2007)]. The theoretical modeling explains that the calcinations treatment can critically affect the sensitivity of the hydrogen sensor due to the enhancement of the binding energy between the SnO2 surface and the adsorbed hydrogen atoms.

Original languageEnglish
Article number104504
JournalJournal of Applied Physics
Volume107
Issue number10
DOIs
Publication statusPublished - 2010 May 15

Fingerprint

Dive into the research topics of 'Theoretical calculations of hydrogen adsorption by SnO2 (110) surface: Effect of doping and calcination'. Together they form a unique fingerprint.

Cite this