TY - JOUR
T1 - Theoretical investigations of the electronic and nuclear dynamics of molecules in intense laser fields
T2 - Quantum mechanical wave packet approaches
AU - Kono, Hirohiko
AU - Sato, Yukio
AU - Kanno, Manabu
AU - Nakai, Katsunori
AU - Kato, Tsuyoshi
PY - 2006
Y1 - 2006
N2 - We have developed a method for describing the reaction dynamics of a polyatomic molecule in intense laser fields. First, the dynamical behavior of H 2 + and H 2 in near-infrared, intense laser fields (I > 10 13 W cm -2 and λ > 700 nm) was examined; accurate evaluation of the electronic and nuclear wave packet was achieved by the dual transformation method that we developed. Using "field-following" time-dependent adiabatic states defined as eigenfunctions of the "instantaneous" electronic Hamiltonian, we have clarified the dynamics of bound electrons, ionization processes, Coulomb explosion processes, and molecular vibrations of H 2 + and H 2. The analyses indicate that the multielectron dynamics and nuclear dynamics of polyatomic molecules in intense fields can be described by using the potential surfaces of time-dependent adiabatic states and the nonadiabatic coupling elements between those states. To obtain time-dependent adiabatic states of a molecule, one can diagonalize the electronic Hamiltonian including the interaction with the instantaneous laser electric field by ab initio molecular orbital (MO) methods. The time-dependent adiabatic potentials obtained are used to evaluate the multichannel nuclear dynamics until the next ionization process. We have applied the time-dependent adiabatic state approach to reveal the characteristic features of the dynamics of structural deformations of CO 2 and its cations in a near-infrared intense laser field. The experimentally observed stretched and bent structure of CO 2 3+ just before Coulomb explosions originates from the structural deformation of CO 2 2+. We also revealed the mechanism of the experimentally observed bond dissociation of C 2H 5OH; we found that the relative probability of C-O bond cleavage to that of C-C bond cleavage becomes smaller with decreases in the pulse length. This example clearly shows that field-induced nonadiabatic transitions play a decisive role in the reaction dynamics of molecules in an intense laser field.
AB - We have developed a method for describing the reaction dynamics of a polyatomic molecule in intense laser fields. First, the dynamical behavior of H 2 + and H 2 in near-infrared, intense laser fields (I > 10 13 W cm -2 and λ > 700 nm) was examined; accurate evaluation of the electronic and nuclear wave packet was achieved by the dual transformation method that we developed. Using "field-following" time-dependent adiabatic states defined as eigenfunctions of the "instantaneous" electronic Hamiltonian, we have clarified the dynamics of bound electrons, ionization processes, Coulomb explosion processes, and molecular vibrations of H 2 + and H 2. The analyses indicate that the multielectron dynamics and nuclear dynamics of polyatomic molecules in intense fields can be described by using the potential surfaces of time-dependent adiabatic states and the nonadiabatic coupling elements between those states. To obtain time-dependent adiabatic states of a molecule, one can diagonalize the electronic Hamiltonian including the interaction with the instantaneous laser electric field by ab initio molecular orbital (MO) methods. The time-dependent adiabatic potentials obtained are used to evaluate the multichannel nuclear dynamics until the next ionization process. We have applied the time-dependent adiabatic state approach to reveal the characteristic features of the dynamics of structural deformations of CO 2 and its cations in a near-infrared intense laser field. The experimentally observed stretched and bent structure of CO 2 3+ just before Coulomb explosions originates from the structural deformation of CO 2 2+. We also revealed the mechanism of the experimentally observed bond dissociation of C 2H 5OH; we found that the relative probability of C-O bond cleavage to that of C-C bond cleavage becomes smaller with decreases in the pulse length. This example clearly shows that field-induced nonadiabatic transitions play a decisive role in the reaction dynamics of molecules in an intense laser field.
UR - http://www.scopus.com/inward/record.url?scp=33746913026&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33746913026&partnerID=8YFLogxK
U2 - 10.1246/bcsj.79.196
DO - 10.1246/bcsj.79.196
M3 - Review article
AN - SCOPUS:33746913026
SN - 0009-2673
VL - 79
SP - 196
EP - 227
JO - Bulletin of the Chemical Society of Japan
JF - Bulletin of the Chemical Society of Japan
IS - 2
ER -