TY - GEN
T1 - Theoretical study of electronic band structure of dumbbellshape graphene nanoribbons for highly-sensitive strain sensors
AU - Zhang, Qinqiang
AU - Kudo, Takuya
AU - Suzuki, Ken
PY - 2018/1/1
Y1 - 2018/1/1
N2 - The authors have proposed the formation of dumbbellshape graphene nanoribbon (GNR) for developing various semiconductive materials with metallic electrode at both ends. The novel dumbbell-shape structure, which has a center narrow part and wide parts to sandwich the narrow part, can be considered as a composite structure consisting of two single GNRs with different ribbon width. In this study, the electronic band structure of this dumbbell-shape GNR was analyzed by using the first principle calculation method. All the first-principles calculations were performed using DFT. Throughout these calculations, the electronic band structures, densities of states, and orbital distributions of the new dumbbell-shape structure GNR were examined to describe the electronic properties of dumbbellshape GNRs and predict the performance of strain sensors. The band gap of dumbbell-shape GNRs is different to that of single GNRs. The magnitude of the band gap of the dumbbell-shape GNR depends on the combination of the single GNRs and the difference in the width of narrow part and wide parts. The main change to the band gap is attributed to a change in the orbital distributions of the lowest unoccupied molecular orbitals (LUMO) and the highest occupied molecular orbitals (HOMO). In addition, when a dumbbell-shape GNR undergoes a uniaxial tensile strain, its band gap showed high strain sensitivity as was expected. Therefore, the GNR material with a dumbbell-shape structure has great potential for use in highly sensitive strain sensors.
AB - The authors have proposed the formation of dumbbellshape graphene nanoribbon (GNR) for developing various semiconductive materials with metallic electrode at both ends. The novel dumbbell-shape structure, which has a center narrow part and wide parts to sandwich the narrow part, can be considered as a composite structure consisting of two single GNRs with different ribbon width. In this study, the electronic band structure of this dumbbell-shape GNR was analyzed by using the first principle calculation method. All the first-principles calculations were performed using DFT. Throughout these calculations, the electronic band structures, densities of states, and orbital distributions of the new dumbbell-shape structure GNR were examined to describe the electronic properties of dumbbellshape GNRs and predict the performance of strain sensors. The band gap of dumbbell-shape GNRs is different to that of single GNRs. The magnitude of the band gap of the dumbbell-shape GNR depends on the combination of the single GNRs and the difference in the width of narrow part and wide parts. The main change to the band gap is attributed to a change in the orbital distributions of the lowest unoccupied molecular orbitals (LUMO) and the highest occupied molecular orbitals (HOMO). In addition, when a dumbbell-shape GNR undergoes a uniaxial tensile strain, its band gap showed high strain sensitivity as was expected. Therefore, the GNR material with a dumbbell-shape structure has great potential for use in highly sensitive strain sensors.
UR - http://www.scopus.com/inward/record.url?scp=85060370041&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060370041&partnerID=8YFLogxK
U2 - 10.1115/IMECE201888431
DO - 10.1115/IMECE201888431
M3 - Conference contribution
AN - SCOPUS:85060370041
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)
BT - Micro- and Nano-Systems Engineering and Packaging
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME 2018 International Mechanical Engineering Congress and Exposition, IMECE 2018
Y2 - 9 November 2018 through 15 November 2018
ER -