Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust

Takaaki Noguchi, Tomoki Nakamura, Kyoko Okudaira, Hajime Yano, Seiji Sugita, Mark J. Burchell

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)


Outside the Earth's atmosphere, silica aerogel is one of the best materials to capture fine-grained extraterrestrial particles in impacts at hypervelocities. Because silica aerogel is a superior insulator, captured grains are inevitably influenced by frictional heat. Therefore, we performed laboratory simulations of hypervelocity capture by using light-gas guns to impact into aerogels fine-grained powders of serpentine, cronstedtite, and Murchison CM2 meteorite. The samples were shot at >6 km s-1 similar to the flyby speed at comet P/Wild-2 in the Stardust mission. We investigated mineralogical changes of each captured particle by using synchrotron radiation X-ray diffraction (SR-XRD), transmission electron microscope (TEM), and field emission scanning electron microscope (FE-SEM). SR-XRD of each grain showed that the majority of the bulk grains keep their original mineralogy. In particular, SR-XRD and TEM investigations clearly exemplified the presence of tochilinite whose decomposition temperature is about 300 °C in the interior of the captured Murchison powder. However, TEM study of these grains also revealed that all the samples experienced melting and vesiculation on the surface. The cronstedtite and the Murchison meteorite powder show remarkable fracturing, disaggregation, melting, and vesiculation. Steep thermal gradients, about 2500 °C/μm were estimated near the surface of the grains (<2 μm thick) by TEM observation. Our data suggests that the interior of >4 μm across residual grains containing abundant materials that inhibit temperature rise would have not experienced >300 °C at the center.

Original languageEnglish
Pages (from-to)357-372
Number of pages16
JournalMeteoritics and Planetary Science
Issue number3
Publication statusPublished - 2007 Mar


Dive into the research topics of 'Thermal alteration of hydrated minerals during hypervelocity capture to silica aerogel at the flyby speed of Stardust'. Together they form a unique fingerprint.

Cite this