TY - GEN
T1 - Thermal prospection of geothermal reservoirs by using thermoluminescence of quartz
AU - Amaya, Alvaro
AU - Hirano, Nobuo
AU - Tsuchiya, Noriyoshi
N1 - Publisher Copyright:
© 2018 International Journal of Caring Sciences. All rights reserved.
PY - 2018
Y1 - 2018
N2 - The Kakkonda shallow reservoir, NE Japan; was evaluated in an initial hypothetical stage of the exploration condition in order to validate a new methodology based on 2 complementary models: (1) A new experimentally kinetic of quartz TL decay equation as a function of time and temperature, (2) A basic reservoir model governed by geothermal equations that consider the geothermal system as a control volume subdivided in vertical rectangular prisms that transport heat from the bottom to the surface where TL property of quartz is gradually decayed due to this ancestral heating flow. This model uses the following equation coupling: the Fourier equation as the heat flux bottom source simulator, the vertical unsteady state heat conduction equation as the geothermal gradient profiles simulator, the volumetric balance of heat reservoir equation as the global parametric calibrator of the system conditions, and the surface answer of geoprocessing samples simulated by the kinetic equation as the heat sensor. The strategy of system solution involved the following steps: the equations development by experimental data validation, parameterization, iterative numerical evaluation process by using the same size of the grid, vectors, and matrixes; and finally, validation, until reservoir parameters convergence. This new methodology was tested in the shallow reservoir of the Kakkonda geothermal field, from 0 m. to 1500 m. The main products of this new methodology evaluation are profiles of temperatures vs. depth simulation, as a new geothermometer of quartz TL; and new geothermal potential map estimation in Megawatts. Thermoluminescence of quartz is an effective technique to evaluate geothermal activity. The Kakkonda shallow reservoir has been effectively modeled with this methodology. This simulation gives to geoscientist the opportunity to upgrade classic conceptual model in a simple, quick, low cost and useful numerical model for geothermal prospecting, optimizing detection of geothermal systems in an early stage of exploration condition.
AB - The Kakkonda shallow reservoir, NE Japan; was evaluated in an initial hypothetical stage of the exploration condition in order to validate a new methodology based on 2 complementary models: (1) A new experimentally kinetic of quartz TL decay equation as a function of time and temperature, (2) A basic reservoir model governed by geothermal equations that consider the geothermal system as a control volume subdivided in vertical rectangular prisms that transport heat from the bottom to the surface where TL property of quartz is gradually decayed due to this ancestral heating flow. This model uses the following equation coupling: the Fourier equation as the heat flux bottom source simulator, the vertical unsteady state heat conduction equation as the geothermal gradient profiles simulator, the volumetric balance of heat reservoir equation as the global parametric calibrator of the system conditions, and the surface answer of geoprocessing samples simulated by the kinetic equation as the heat sensor. The strategy of system solution involved the following steps: the equations development by experimental data validation, parameterization, iterative numerical evaluation process by using the same size of the grid, vectors, and matrixes; and finally, validation, until reservoir parameters convergence. This new methodology was tested in the shallow reservoir of the Kakkonda geothermal field, from 0 m. to 1500 m. The main products of this new methodology evaluation are profiles of temperatures vs. depth simulation, as a new geothermometer of quartz TL; and new geothermal potential map estimation in Megawatts. Thermoluminescence of quartz is an effective technique to evaluate geothermal activity. The Kakkonda shallow reservoir has been effectively modeled with this methodology. This simulation gives to geoscientist the opportunity to upgrade classic conceptual model in a simple, quick, low cost and useful numerical model for geothermal prospecting, optimizing detection of geothermal systems in an early stage of exploration condition.
KW - Exploration
KW - Geothermal prospection
KW - Reservoir model
KW - Thermoluminescence of quartz
KW - TL
UR - http://www.scopus.com/inward/record.url?scp=85059901461&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85059901461&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85059901461
T3 - Transactions - Geothermal Resources Council
SP - 444
EP - 451
BT - Geothermal's Role in Today's Energy Market - Geothermal Resources Council 2018 Annual Meeting, GRC 2018
PB - Geothermal Resources Council
T2 - Geothermal Resources Council 2018 Annual Meeting: Geothermal's Role in Today's Energy Market, GRC 2018
Y2 - 14 October 2018 through 17 October 2018
ER -