Thermomigration of molten Cr-Si-C alloy in 4H-SiC at 1873–2273 K

Sakiko Kawanishi, Takeshi Yoshikawa, Hiroyuki Shibata

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)


Thermomigration of molten Cr-Si-C alloys in silicon carbide (SiC)along a quasi-binary Cr-SiC system at 1873–2273 K was evaluated by the temperature gradient zone melting method. Solute diffusivity in the molten alloy and distribution of Cr between 4H-SiC and the alloy were studied, where both properties are important for designing a process for the solution growth of single crystalline 4H-SiC. The migration was found to be controlled by interdiffusion in the molten alloy from the measured migration rate. The obtained interdiffusion coefficients were (0.11–1.3)× 10−7 m2 s−1, and these increased with increasing temperature. The Cr impurities in 4H-SiC were found to be distributed to maintain the thermodynamic equilibration with the alloy, and increased with temperature in the range of (0.26–2.2)× 1017 cm−3. The thermodynamic property of Cr in SiC was assessed, and will enable the solubility of Cr in 4H-SiC grown at various solvent temperatures and compositions to be estimated.

Original languageEnglish
Pages (from-to)73-80
Number of pages8
JournalJournal of Crystal Growth
Publication statusPublished - 2019 Jul 15


  • A1. Diffusion
  • A1. Solubility
  • A1. Thermodynamics
  • A2. Temperature gradient zone melting method
  • B1. Silicon carbide
  • B2. Semiconducting silicon compounds


Dive into the research topics of 'Thermomigration of molten Cr-Si-C alloy in 4H-SiC at 1873–2273 K'. Together they form a unique fingerprint.

Cite this