Three-dimensional morphological and chemical evolution of Nanoporous stainless steel by liquid metal dealloying

Chonghang Zhao, Takeshi Wada, Vincent De Andrade, Garth J. Williams, Jeff Gelb, Li Li, Juergen Thieme, Hidemi Kato, Yu Chen Karen Chen-Wiegart

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)


Nanoporous materials, especially those fabricated by liquid metal dealloying processes, possess great potential in a wide range of applications due to their high surface area, bicontinuous structure with both open pores for transport and solid phase for conductivity or support, and low material cost. Here, we used X-ray nanotomography and X-ray fluorescence microscopy to reveal the three-dimensional (3D) morphology and elemental distribution within materials. Focusing on nanoporous stainless steel, we evaluated the 3D morphology of the dealloying front and established a quantitative processing-structure-property relationship at a later stage of dealloying. The morphological differences of samples created by liquid metal dealloying and aqueous dealloying methods were also discussed. We concluded that it is particularly important to consider the dealloying, coarsening, and densification mechanisms in influencing the performancedetermining, critical 3D parameters, such as tortuosity, pore size, porosity, curvature, and interfacial shape.

Original languageEnglish
Pages (from-to)34172-34184
Number of pages13
JournalACS Applied Materials and Interfaces
Issue number39
Publication statusPublished - 2017 Oct 4


  • Dealloying
  • Nanoporous
  • Stainless steel
  • Tomography
  • X-ray CT
  • XRF

ASJC Scopus subject areas

  • Materials Science(all)


Dive into the research topics of 'Three-dimensional morphological and chemical evolution of Nanoporous stainless steel by liquid metal dealloying'. Together they form a unique fingerprint.

Cite this