TY - JOUR
T1 - Tight regulation of transgene expression by tetracycline-dependent activator and repressor in brain
AU - Uchida, S.
AU - Sakai, S.
AU - Furuichi, T.
AU - Hosoda, H.
AU - Toyota, K.
AU - Ishii, T.
AU - Kitamoto, A.
AU - Sekine, M.
AU - Koike, K.
AU - Masushige, S.
AU - Murphy, G.
AU - Silva, A. J.
AU - Kida, S.
PY - 2006/2
Y1 - 2006/2
N2 - Methods to temporally and spatially regulate gene mutations will provide a powerful strategy to investigate gene function in the brain. To develop these methods, we have established a tightly regulated system for transgene expression in the forebrain using both a tetracycline (Tc)-dependent transcription activator (rtTA) and a repressor (TetR-Kruppel-associated box). In this system, the repressor binds to the Tc-responsive element (TRE) in the absence of doxycycline (Dox), leading to the repression of leaky activation of TRE-mediated transcription caused by weak binding of rtTA to TRE. Upon Dox administration, only the activator binds to TRE and activates transcription. We tested this system in cultured cells by bicistronically expressing both the regulators using an internal ribosome entry site (IRES). In COS-1, HeLa and SHSY5Y cells, leaky transcription activation led by rtTA in the absence of Dox was repressed without decreasing the level of activated transcription in the presence of Dox. Using this system, transgenic mice were produced that express both the regulators using IRES in the forebrain under the control of the αCaMKII promoter and were bred with transgenic mice carrying the TRE-dependent reporter transgene. In reverse transcription-polymerase chain reaction and in situ hybridization analyses of the forebrain in adult double transgenic mice, the treatment of Dox induces reporter mRNA expression, which was not detected before the treatment and after the withdraw of Dox following the treatment. These results indicate that this system allows the tight regulation of transgene expression in a Dox-dependent fashion in the forebrain and will be useful in investigating gene function in the brain.
AB - Methods to temporally and spatially regulate gene mutations will provide a powerful strategy to investigate gene function in the brain. To develop these methods, we have established a tightly regulated system for transgene expression in the forebrain using both a tetracycline (Tc)-dependent transcription activator (rtTA) and a repressor (TetR-Kruppel-associated box). In this system, the repressor binds to the Tc-responsive element (TRE) in the absence of doxycycline (Dox), leading to the repression of leaky activation of TRE-mediated transcription caused by weak binding of rtTA to TRE. Upon Dox administration, only the activator binds to TRE and activates transcription. We tested this system in cultured cells by bicistronically expressing both the regulators using an internal ribosome entry site (IRES). In COS-1, HeLa and SHSY5Y cells, leaky transcription activation led by rtTA in the absence of Dox was repressed without decreasing the level of activated transcription in the presence of Dox. Using this system, transgenic mice were produced that express both the regulators using IRES in the forebrain under the control of the αCaMKII promoter and were bred with transgenic mice carrying the TRE-dependent reporter transgene. In reverse transcription-polymerase chain reaction and in situ hybridization analyses of the forebrain in adult double transgenic mice, the treatment of Dox induces reporter mRNA expression, which was not detected before the treatment and after the withdraw of Dox following the treatment. These results indicate that this system allows the tight regulation of transgene expression in a Dox-dependent fashion in the forebrain and will be useful in investigating gene function in the brain.
KW - Conditional mutation
KW - Gene expression regulation
KW - Mouse genetics
KW - Tetracycline-dependent regulators
KW - Transcription factor
KW - Transgenic mice
UR - http://www.scopus.com/inward/record.url?scp=33645088922&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33645088922&partnerID=8YFLogxK
U2 - 10.1111/j.1601-183X.2005.00139.x
DO - 10.1111/j.1601-183X.2005.00139.x
M3 - Article
C2 - 16436193
AN - SCOPUS:33645088922
SN - 1601-1848
VL - 5
SP - 96
EP - 106
JO - Genes, Brain and Behavior
JF - Genes, Brain and Behavior
IS - 1
ER -