TY - JOUR
T1 - Tl2NaYCl6
T2 - a new self‐activated scintillator possessing an elpasolite structure
AU - Arai, Miki
AU - Mizoi, Kohei
AU - Fujimoto, Yutaka
AU - Koshimizu, Masanori
AU - Nakauchi, Daisuke
AU - Yanagida, Takayuki
AU - Asai, Keisuke
N1 - Funding Information:
This research was supported by a Grant-in-Aid for Scientific Research (A) (No. 18H03890, 2018–2021) and Nakatani Foundation for advancement of measuring technologies in biomedical engineering. A part of this research is based on the Cooperative Research Project of the Research Center for Biomedical Engineering, Ministry of Education, Culture, Sports, Science and Technology.
Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature.
PY - 2021/3
Y1 - 2021/3
N2 - Crystalline scintillators with an elpasolite structure (A1+2B1+C3+X1−6) have received significant attention owing to their good energy resolution and high light yield. We also focused on Tl-based scintillators, since Tl ion has a large atomic number (Z = 81) and there are some reports on these scintillators which have good scintillation properties. Herein, we developed a new self-activated elpasolite crystalline scintillator, Tl2NaYCl6, with a large effective atomic number (Zeff = 70.2). According to the XRD pattern, Tl2NaYCl6 crystal has a tetragonal structure belonging to the P4/nbm (125) space group and with lattice constants of 1.052 and 1.060 nm. The PL excitation and emission wavelengths are 240 and 390 nm, respectively. The scintillation emission wavelength is 430 nm, which is characteristic of thallium-based self-activated scintillators and suitable for PMTs. These PL and scintillation emissions are similar to other Tl-based scintillators and attributed to self-trapped excitons. The scintillation decay time constants are 350 (80%) and 2.5 × 103 (20%) ns. These decay time constants are also characteristic of thallium-based self-activated scintillators. The light yield is 2.3 × 104 photons/MeV, which is higher than that of Ce-doped Gd2SiO5 (GSO) (1.0 × 104 photons/MeV), a commercial scintillator, and is similar to those of other self-activated elpasolite scintillators, such as Cs2LiCeCl6 (2.2 × 104 photons/MeV) and Tl2LiGdBr6 (~ 2.7 × 104 photons/MeV). The energy resolution of the crystal is 6.3%, which is also better than that of the commercial scintillator, GSO (8.6%), and also similar to those of other self-activated elpasolite scintillators, such as Cs2LiCeCl6 (5.5%) and Tl2LiGdBr6 (7.2%).
AB - Crystalline scintillators with an elpasolite structure (A1+2B1+C3+X1−6) have received significant attention owing to their good energy resolution and high light yield. We also focused on Tl-based scintillators, since Tl ion has a large atomic number (Z = 81) and there are some reports on these scintillators which have good scintillation properties. Herein, we developed a new self-activated elpasolite crystalline scintillator, Tl2NaYCl6, with a large effective atomic number (Zeff = 70.2). According to the XRD pattern, Tl2NaYCl6 crystal has a tetragonal structure belonging to the P4/nbm (125) space group and with lattice constants of 1.052 and 1.060 nm. The PL excitation and emission wavelengths are 240 and 390 nm, respectively. The scintillation emission wavelength is 430 nm, which is characteristic of thallium-based self-activated scintillators and suitable for PMTs. These PL and scintillation emissions are similar to other Tl-based scintillators and attributed to self-trapped excitons. The scintillation decay time constants are 350 (80%) and 2.5 × 103 (20%) ns. These decay time constants are also characteristic of thallium-based self-activated scintillators. The light yield is 2.3 × 104 photons/MeV, which is higher than that of Ce-doped Gd2SiO5 (GSO) (1.0 × 104 photons/MeV), a commercial scintillator, and is similar to those of other self-activated elpasolite scintillators, such as Cs2LiCeCl6 (2.2 × 104 photons/MeV) and Tl2LiGdBr6 (~ 2.7 × 104 photons/MeV). The energy resolution of the crystal is 6.3%, which is also better than that of the commercial scintillator, GSO (8.6%), and also similar to those of other self-activated elpasolite scintillators, such as Cs2LiCeCl6 (5.5%) and Tl2LiGdBr6 (7.2%).
UR - http://www.scopus.com/inward/record.url?scp=85101611575&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101611575&partnerID=8YFLogxK
U2 - 10.1007/s10854-021-05514-4
DO - 10.1007/s10854-021-05514-4
M3 - Article
AN - SCOPUS:85101611575
SN - 0957-4522
VL - 32
SP - 7906
EP - 7912
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 6
ER -